Fluorescence Polarization-Based Bioassays: New Horizons

Sensors (Basel). 2020 Dec 12;20(24):7132. doi: 10.3390/s20247132.

Abstract

Fluorescence polarization holds considerable promise for bioanalytical systems because it allows the detection of selective interactions in real time and a choice of fluorophores, the detection of which the biosample matrix does not influence; thus, their choice simplifies and accelerates the preparation of samples. For decades, these possibilities were successfully applied in fluorescence polarization immunoassays based on differences in the polarization of fluorophore emissions excited by plane-polarized light, whether in a free state or as part of an immune complex. However, the results of recent studies demonstrate the efficacy of fluorescence polarization as a detected signal in many bioanalytical methods. This review summarizes and comparatively characterizes these developments. It considers the integration of fluorescence polarization with the use of alternative receptor molecules and various fluorophores; different schemes for the formation of detectable complexes and the amplification of the signals generated by them. New techniques for the detection of metal ions, nucleic acids, and enzymatic reactions based on fluorescence polarization are also considered.

Keywords: antibodies; aptamers; bioreceptors; fluorescence polarization; immunoassay; nucleic acids; portable optical detectors; rotation of molecules; switched on biosensors.

Publication types

  • Review

MeSH terms

  • Biological Assay*
  • Fluorescence Polarization
  • Fluorescent Dyes*
  • Metals
  • Nucleic Acids*

Substances

  • Fluorescent Dyes
  • Metals
  • Nucleic Acids