Redox Regulation of Microvascular Permeability: IL-1β Potentiation of Bradykinin-Induced Permeability Is Prevented by Simvastatin

Antioxidants (Basel). 2020 Dec 14;9(12):1269. doi: 10.3390/antiox9121269.


Antioxidant effects of statins have been implicated in the reduction in microvascular permeability and edema formation in experimental and clinical studies. Bradykinin (Bk)-induced increases in microvascular permeability are potentiated by IL-1β; however, no studies have examined the protection afforded by statins against microvascular hyperpermeability. We investigated the effects of simvastatin pretreatment on albumin-fluorescein isothiocyanate conjugate (FITC-albumin) permeability in post-capillary venules in rat cremaster muscle. Inhibition of nitric oxide synthase with L-NAME (10µM) increased basal permeability to FITC-albumin, which was abrogated by superoxide dismutase and catalase. Histamine-induced (1 µM) permeability was blocked by L-NAME but unaffected by scavenging reactive oxygen species with superoxide dismutase (SOD) and catalase. In contrast, bradykinin-induced (1-100 nM) permeability increases were unaffected by L-NAME but abrogated by SOD and catalase. Acute superfusion of the cremaster muscle with IL-1β (30 pM, 10 min) resulted in a leftward shift of the bradykinin concentration-response curve. Potentiation by IL-1β of bradykinin-induced microvascular permeability was prevented by the nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) inhibitor apocynin (1 µM). Pretreatment of rats with simvastatin (5 mg·kg-1, i.p.) 24 h before permeability measurements prevented the potentiation of bradykinin permeability responses by IL-1β, which was not reversed by inhibition of heme oxygenase-1 with tin protoporphyrin IX (SnPP). This study highlights a novel mechanism by which simvastatin prevents the potentiation of bradykinin-induced permeability by IL-1β, possibly by targeting the assembly of NADPH oxidase subunits. Our findings highlight the therapeutic potential of statins in the prevention and treatment of patients predisposed to inflammatory diseases.

Keywords: NADPH oxidase; bradykinin; interleukin 1β; microvascular permeability; reactive oxygen species; simvastatin.