Light-dependent photoreceptor orientation in mouse retina

Sci Adv. 2020 Dec 16;6(51):eabe2782. doi: 10.1126/sciadv.abe2782. Print 2020 Dec.

Abstract

Almost a century ago, Stiles and Crawford reported that the human eye is more sensitive to light entering through the pupil center than through its periphery (Stiles-Crawford effect). This psychophysical phenomenon, later found to correlate with photoreceptor orientation toward the pupil, was dynamically phototropic, adjustable within days to an eccentrically displaced pupil. For decades, this phototropism has been speculated to involve coordinated movements of the rectilinear photoreceptor outer and inner segments. We report here that, unexpectedly, the murine photoreceptor outer segment has a seemingly light-independent orientation, but the inner segment's orientation undergoes light-dependent movement, giving rise to nonrectilinear outer and inner segments in adult mice born and reared in darkness. Light during an early critical period (~P0 to P8), however, largely sets the correct photoreceptor orientation permanently afterward. Unexpectedly, abolishing rod and cone phototransductions did not mimic darkness in early life, suggesting photosignaling extrinsic to rods and cones is involved.