Robustness of Brain Structural Networks Is Affected in Cognitively Impaired MS Patients

Front Neurol. 2020 Nov 19;11:606478. doi: 10.3389/fneur.2020.606478. eCollection 2020.

Abstract

The robustness of brain structural networks, estimated from diffusion MRI data, may be relevant to cognition. We investigate whether measures of network robustness, such as Ollivier-Ricci curvature, can explain cognitive impairment in multiple sclerosis (MS). We assessed whether local (i.e., cortical area) and/or global (i.e., whole brain) robustness, differs between cognitively impaired (MSCI) and non-impaired (MSNI) MS patients. Fifty patients, with Expanded Disability Status Scale mean (m): 3.2, disease duration m: 12 years, and age m: 40 years, were enrolled. Cognitive impairment scores were estimated from the Minimal Assessment of Cognitive Function in Multiple Sclerosis. Images were obtained in a 3T MRI using a diffusion protocol with a 2 min acquisition time. Brain structural networks were created using 333 cortical areas. Local and global robustness was estimated for each individual, and comparisons were performed between MSCI and MSNI patients. 31 MSCI and 10 MSNI patients were included in the analyses. Brain structural network robustness and centrality showed significant correlations with cognitive impairment. Measures of network robustness and centrality identified specific cortical areas relevant to MS-related cognitive impairment. These measures can be obtained on clinical scanners and are succinct yet accurate potential biomarkers of cognitive impairment.

Keywords: Ollivier-Ricci curvature; brain networks; brain networks robustness; cognitive impairment; diffusion MRI; imaging bio-markers; multiple sclerosis.