A rapid molecular diagnostic method for spinal muscular atrophy

J Neurogenet. 2021 Mar;35(1):29-32. doi: 10.1080/01677063.2020.1853721. Epub 2020 Dec 17.

Abstract

Spinal muscular atrophy (SMA) is a common autosomal recessive disorder which has been considered as the second common cause of infant death, with an estimated prevalence of 1 in 10,000 live births. The disorder is caused by survival motor neuron 1 gene (SMN1) deficiency leading to limb weakness, difficult swallowing and abnormal breathing. Here, a fast and accurate method for SMA detection has been developed. Genomic DNA sample collected from whole blood, amniotic fluid, or dried blood spots can be analysed by using the Clarity™ Digital PCR (dPCR) System for determining the copy numbers of SMN1 and SMN2 genes. Two hundred and fourteen clinical samples determined by qPCR-based method were enrolled and used to establish the cut-off ranges for unaffected individual, SMA carrier and SMA patient categories. After setting the cut-off range for each group, 12 samples were analyzed by both dPCR-based method and MLPA (multiplex ligation-dependent probe amplification), the current testing golden standard for SMA, and 100% concordant results between the two testing methods were performed. CSB SMA Detection Kit combined with dPCR platform provides a robust and precise approach to distinguish unaffected individuals, SMA carrier and SMA patients. This rapid molecular diagnostic method can be adapted to pre-pregnancy eugenics inspection, prenatal testing as well as newborns screening and help physicians or genetic counselors to improve population SMA incidence.

Keywords: Digital PCR; SMA; SMN1; SMN2.

MeSH terms

  • DNA Copy Number Variations*
  • Female
  • Humans
  • Male
  • Molecular Diagnostic Techniques
  • Muscular Atrophy, Spinal / diagnosis*
  • Muscular Atrophy, Spinal / genetics
  • Survival of Motor Neuron 1 Protein / genetics*
  • Survival of Motor Neuron 2 Protein / genetics

Substances

  • SMN1 protein, human
  • SMN2 protein, human
  • Survival of Motor Neuron 1 Protein
  • Survival of Motor Neuron 2 Protein