Water security and watershed management assessed through the modelling of hydrology and ecological integrity: A study in the Galicia-Costa (NW Spain)

Sci Total Environ. 2021 Mar 10;759:143905. doi: 10.1016/j.scitotenv.2020.143905. Epub 2020 Dec 3.

Abstract

Water management is a crucial tool for addressing the increasing uncertainties caused by climate change, biodiversity loss and the conditions of socioeconomic limits. The multiple factors affecting water resources need to be successfully managed to achieve optimal governance and thus move towards water security. This study seeks to obtain a holistic vision of the various threats that affect the ecological integrity of the basins that form the hydrological district of Galicia-Costa, through the method of partial least squares path modelling (PLS-PM). The data is analysed overall for the hydrological years from 2009 to 2015. The independent latent variables are "Anthropogenic" (comprising the percentage of water bodies with edges alongside artificial surfaces, the percentage connected to artificial land use patches, the edge density of artificial surfaces and population density) and "Nature" (edge density of forestry land uses, edge length of land water bodies alongside forested areas and the percentage of land occupied by the largest patch of forest). The dependent latent variables are "SWP", which represents surface water parameters (biological oxygen demand, chlorides, conductivity and dissolved iron) and "Ecological Integrity" (METI Bioindicator). The connections between latent variables are uantified through path coefficients (β). From an overall perspective, the PLS-PM results reveal that 69.0% of "SWP" is predicted by the independent variables (R2 = 0.690), "Anthropogenic" contributes by increasing SWP (β = 0.471), while "Nature" decreases the concentration of SWP (β = -0.523), which indicates the polluting parameters in the water. The variables "Anthropogenic" (β = -0.351) and "SWP" (β = -0.265) lower the quality of "Ecological Integrity". This variable must be managed through soil conservation measures for the benefit of water security. This study has been able to identify and quantify the variables that increase contaminant concentration and decrease ecological integrity, providing a promising methodology that facilitates protection and correction measures to guarantee water safety.

Keywords: Ecological integrity; Governance; Land use conflicts; Partial least squares-path modelling; Water quality; Water security.