Neurovascular inflammation in the pathogenesis of brain arteriovenous malformations
- PMID: 33345330
- DOI: 10.1002/jcp.30226
Neurovascular inflammation in the pathogenesis of brain arteriovenous malformations
Abstract
Brain arteriovenous malformations (bAVM) arise as congenital or sporadic focal lesions with a significant risk for intracerebral hemorrhage (ICH). A wide range of interindividual differences is present in the onset, progression, and severity of bAVM. A growing body of gene expression and polymorphism-based research studies support the involvement of localized inflammation in bAVM disease progression and rupture. In this review article, we analyze the altered responses of neural, vascular, and immune cell types that contribute to the inflammatory process, which exacerbates the pathophysiological progression of vascular dysmorphogenesis in bAVM lesions. The cumulative effect of inflammation in bAVM development is orchestrated by various genetic moderators and inflammatory mediators. We also discuss the potential therapies for the treatment of brain AVM by targeting the inflammatory processes and mediators. Elucidating the precise role of inflammation in the bAVM growth and hemorrhage would open novel avenues for noninvasive and effectual causal therapy that may complement the current therapeutic strategies.
Keywords: arteriovenous malformations; brain AVM; hereditary hemorrhagic telangiectasia; intracerebral hemorrhage; neuroinflammation.
© 2020 Wiley Periodicals LLC.
Similar articles
-
The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations.Biomedicines. 2023 Oct 24;11(11):2876. doi: 10.3390/biomedicines11112876. Biomedicines. 2023. PMID: 38001877 Free PMC article. Review.
-
Thalidomide Reduces Hemorrhage of Brain Arteriovenous Malformations in a Mouse Model.Stroke. 2018 May;49(5):1232-1240. doi: 10.1161/STROKEAHA.117.020356. Epub 2018 Mar 28. Stroke. 2018. PMID: 29593101 Free PMC article.
-
Association of common candidate variants with vascular malformations and intracranial hemorrhage in hereditary hemorrhagic telangiectasia.Mol Genet Genomic Med. 2018 May;6(3):350-356. doi: 10.1002/mgg3.377. Epub 2018 Mar 6. Mol Genet Genomic Med. 2018. PMID: 29932521 Free PMC article.
-
Reductions in brain pericytes are associated with arteriovenous malformation vascular instability.J Neurosurg. 2018 Dec 1;129(6):1464-1474. doi: 10.3171/2017.6.JNS17860. J Neurosurg. 2018. PMID: 29303444 Free PMC article.
-
Pathogenesis and radiobiology of brain arteriovenous malformations: implications for risk stratification in natural history and posttreatment course.Neurosurg Focus. 2009 May;26(5):E9. doi: 10.3171/2009.2.FOCUS0926. Neurosurg Focus. 2009. PMID: 19409010 Review.
Cited by
-
The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations.Biomedicines. 2023 Oct 24;11(11):2876. doi: 10.3390/biomedicines11112876. Biomedicines. 2023. PMID: 38001877 Free PMC article. Review.
-
Understanding the pathogenesis of brain arteriovenous malformation: genetic variations, epigenetics, signaling pathways, and immune inflammation.Hum Genet. 2023 Dec;142(12):1633-1649. doi: 10.1007/s00439-023-02605-6. Epub 2023 Sep 28. Hum Genet. 2023. PMID: 37768356 Review.
-
Increased Matrix Metalloproteinase-1 Activation Enhances Disruption and Regression of k-RasV12-Expressing Arteriovenous Malformation-Like Vessels.Am J Pathol. 2023 Sep;193(9):1319-1334. doi: 10.1016/j.ajpath.2023.05.015. Epub 2023 Jun 14. Am J Pathol. 2023. PMID: 37328101
-
Methodological quality assessment of genetic studies on brain arteriovenous malformation related hemorrhage: A cross-sectional study.Front Genet. 2023 Mar 23;14:1123898. doi: 10.3389/fgene.2023.1123898. eCollection 2023. Front Genet. 2023. PMID: 37065486 Free PMC article.
-
Oscillatory shear stress modulates Notch-mediated endothelial mesenchymal plasticity in cerebral arteriovenous malformations.Cell Mol Biol Lett. 2023 Mar 18;28(1):22. doi: 10.1186/s11658-023-00436-x. Cell Mol Biol Lett. 2023. PMID: 36934253 Free PMC article.
References
REFERENCES
-
- Achroll, A. S., Kim, H., Pawlikowska, L., Trudy Poon, K. Y., McCulloch, C. E., Ko, N. U., Johnston, S. C., McDermott, M. W., Zaroff, J. G., Lawton, M. T., Kwok, P. Y., & Young, W. L. (2007). Association of tumor necrosis factor-α-238G$$ A and apolipoprotein E2 polymorphisms with intracranial hemorrhage after brain arteriovenous malformation treatment. Neurosurgery, 61(4), 731-740. https://doi.org/10.1227/01.NEU.0000298901.61849.A4
-
- Amati, L., Passeri, M. E., Resta, F., Triggiani, V., Jirillo, E., & Sabbà, C. (2006). Ablation of T-helper 1 cell derived cytokines and of monocyte-derived tumor necrosis factor-α in hereditary hemorrhagic telangiectasia: Immunological consequences and clinical considerations. Current Pharmaceutical Design, 12(10), 1201-1208. https://doi.org/10.2174/138161206776361372
-
- Anbarasen, L., Lim, J., Rajandram, R., Mun, K. S., & Sia, S. F. (2019). Expression of osteopontin, matrix metalloproteinase-2 and -9 proteins in vascular instability in brain arteriovenous malformation. PeerJ (Corta Madera, CA and London), 7, e7058. https://doi.org/10.7717/peerj.7058
-
- Aziz, M. M., Takagi, Y., Hashimoto, N., & Miyamoto, S. (2010). Activation of nuclear factor κB in cerebral arteriovenous malformations. Neurosurgery, 67(6), 1669-1680. https://doi.org/10.1227/NEU.0b013e3181fa00f1
-
- Baeyensens, N., Larrivée, B., Ola, R., Hayward-Piatkowskyi, B., Dubrac, A., Huang, B., Ross, T. D., Coon, B. G., Min, E., Tsarfati, M., Tong, H., Eichmann, A., & Schwartz, M. A. (2016). Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. Journal of Cell Biology, 214(7), 807-816. https://doi.org/10.1083/jcb.201603106
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
