Nonlinear regression analysis and response surface modeling of Cr (VI) removal from synthetic wastewater by an agro-waste Cocos Nucifera: Box-Behnken Design (BBD)

Int J Phytoremediation. 2021;23(8):791-808. doi: 10.1080/15226514.2020.1858399. Epub 2020 Dec 21.

Abstract

In this study mixture of coconut shell and coir was used for Cr (VI) removal from synthetic wastewater and statistical tool Response Surface Modeling (RSM) was applied to optimize process parameters. The solution pH (2-6), reaction time (20-100 minutes) and adsorbent quantity (0.03-0.2 g) was optimized to find the maximum response of Cr (VI) removal using statistical Box-Behnken design (BBD) software. The equilibrium data obtained by the batch experiment were analyzed by ANOVA and found fitted in a second-order polynomial equation through multiple regression analysis. The optimum value of pH, adsorbent quantity and reaction time for 99% of Cr(VI) was found as 2, 0.1 g and 100 minutes, respectively. By using non-linear regression method it was found that Freundlich isotherm and Pseudo-second-order kinetic with high correlation coefficient (R2), low Chi-square (χ2) and root mean squares errors (RMSE), best describe the adsorption of Cr (VI) on mixture of coconut shell and coir (MCSC) surface. Positive enthalpy (ΔH°) and negative Gibbs free energy (ΔGo) values confirm the endothermic and spontaneous nature of adsorption process. Pre and post adsorption phenomenon was confirmed by characterization of adsorbent using AFM, FTIR, SEM, and EDX analysis. The adsorbent MCSC has regenerative property and can be reused 3-4 times after treating with alkaline medium (0.2 N NaOH) and offered more than 60% removal of Cr (VI) at the fourth cycle. It can be inferred based on this study that MCSC is an effective adsorbent for Cr (VI) removal and can be used on an industrial scale for social and environmental benefit. Novelty statement An agriculture waste mixture of coconut shell and coir (MCSC) without the addition of any chemical reagent, was used for Cr(VI) removal. As per literature survey and best of our knowledge, the adsorbent MCSC has not been reported for Cr (VI) removal. In the previous study, authors reported either coconut coir pith or coconut shell or coconut charcoal as adsorbent for Cr (VI) removal. The adsorbent MCSC is efficient even at very low doses (0.1 g) as compared to the reported adsorbent.

Keywords: AFM; Chromium (VI); RSM; SEM; adsorption; error function; kinetics; mixture of coconut shell and coir (MCSC).

MeSH terms

  • Adsorption
  • Biodegradation, Environmental
  • Chromium
  • Cocos
  • Hydrogen-Ion Concentration
  • Kinetics
  • Regression Analysis
  • Thermodynamics
  • Wastewater
  • Water Pollutants, Chemical*
  • Water Purification*

Substances

  • Waste Water
  • Water Pollutants, Chemical
  • Chromium