Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Feb:257:153336.
doi: 10.1016/j.jplph.2020.153336. Epub 2020 Dec 24.

Improved resource allocation and stabilization of yield under abiotic stress

Affiliations
Review

Improved resource allocation and stabilization of yield under abiotic stress

Isabel Keller et al. J Plant Physiol. 2021 Feb.

Abstract

Sugars are the main building blocks for carbohydrate storage, but also serve as signaling molecules and protective compounds during abiotic stress responses. Accordingly, sugar transport proteins fulfill multiple roles as they mediate long distance sugar allocation, but also shape the subcellular and tissue-specific carbohydrate profiles by balancing the levels of these molecules in various compartments. Accordingly, transporter activity represents a target by classical or directed breeding approaches, to either, directly increase phloem loading or to increase sink strength in crop species. The relative subcellular distribution of sugars is critical for molecular signaling affecting yield-relevant processes like photosynthesis, onset of flowering and stress responses, while controlled long-distance sugar transport directly impacts development and productivity of plants. However, long-distance transport is prone to become unbalanced upon adverse environmental conditions. Therefore, we highlight the influence of stress stimuli on sucrose transport in the phloem and include the role of stress induced cellular carbohydrate sinks, like raffinose or fructans, which possess important roles to build up tolerance against challenging environmental conditions. In addition, we report on recent breeding approaches that resulted in altered source and sink capacities, leading to increased phloem sucrose shuttling in crops. Finally, we present strategies integrating the need of cellular stress-protection into the general picture of long-distance transport under abiotic stress, and point to possible approaches improving plant performance and resource allocation under adverse environmental conditions, leading to stabilized or even increased crop yield.

Keywords: Abiotic stress; Crops; Fructan; Phloem; Plant biotechnology; Raffinose; Sucrose; Sugar transport.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources