Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Feb 8;938(1):35-43.
doi: 10.1016/0005-2736(88)90119-8.

Phospholipase A2 hydrolysis of membrane phospholipids causes structural alteration of the nicotinic acetylcholine receptor

Affiliations

Phospholipase A2 hydrolysis of membrane phospholipids causes structural alteration of the nicotinic acetylcholine receptor

M T Villar et al. Biochim Biophys Acta. .

Abstract

Thermal perturbation techniques have been used to probe structural alteration of the nicotinic acetylcholine receptor as a function of perturbations of its native membrane environment. Differential scanning calorimetry and a technique involving heat inactivation of the alpha-bungarotoxin-binding sites on the receptor protein reveal that there is a profound destabilization of the acetylcholine receptor structure when receptor-containing membranes are exposed to phospholipase A2. The characteristic calorimetric transition assigned to irreversible denaturation of the receptor protein and the heat inactivation profile of alpha-bungarotoxin-binding sites are shifted to lower temperatures by approx. 7 and 5 C degrees, respectively, upon exposure to phospholipase A2 at a phospholipase/neurotoxin binding site molar ratio of about 1:100. The effects of phospholipase A2 on receptor structure can be (i) reversed by using bovine serum albumin as a scavenger of phospholipase hydrolysis products of membrane phospholipids, and (ii) stimulated by incorporation into the membranes of free, polyunsaturated fatty acids. In particular, linolenic acid (18:3(n-3] causes detectable destabilization of the alpha-bungarotoxin binding sites on the receptor at free fatty acid/receptor molar ratios as low as 10:1. Furthermore, alteration of receptor structure by added phospholipase occurs very rapidly, which is consistent with the observation of rapid in situ phospholipase A2 hydrolysis of membrane phospholipids, particularly highly unsaturated phosphatidylethanolamine and phosphatidylserine. Based on previously published data on the inhibition of acetylcholine receptor cation-gating activity caused by the presence of either phospholipase A2 or free fatty acids (Andreasen T.J. and McNamee M.G. (1980) Biochemistry 19, 4719), we interpret our data as indicative of a correlation between structural and functional alterations of the membrane-bound acetylcholine receptor induced by phospholipase A2 hydrolysis products.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources