Pd-Pt Tesseracts for the Oxygen Reduction Reaction

J Am Chem Soc. 2021 Jan 13;143(1):496-503. doi: 10.1021/jacs.0c12282. Epub 2021 Jan 1.

Abstract

Hollow frame structures are of special interest in the realm of catalysis since they hold only ridges and hollow interiors, enabling the accessibility of active sites to the most extent. Herein, we prepared Pd-Pt hollow frame structures composed of double-shell cubes linked by body diagonals as an efficient catalyst toward the oxygen reduction reaction (ORR), inspired by the 4D analogue of a cube, denoted as a tesseract. The etching process involves the selective removal of Pd atoms and the subsequent rearrangement of the remaining Pd and Pt atoms. The successful preparation of Pd-Pt tesseracts via etching lies in the selection of Pd/Pt ratio in the initial Pd-Pt nanocubes. With various ratios of Pd-Pt nanocubes as templates, we obtained Pd-Pt octapods, tesseracts, and nanoframes, respectively. During the ORR, Pd-Pt tesseracts exhibited the highest mass activity of 1.86 A mg-1Pt among these Pd-Pt nanocrystals. On the basis of mechanistic studies, the high activity of Pd-Pt tesseracts derived from the optimal oxygen adsorption energy due to the facet effect and composition effect.

Publication types

  • Research Support, Non-U.S. Gov't