Vertical transmission of Trypanosomacruzi is the cause of congenital Chagas disease, a re-emerging infectious disease that affects endemic and nonendemic regions alike. An early diagnosis is crucial because prompt treatment achieves a high cure rate, precluding evolution to symptomatic chronic Chagas disease. However, early diagnosis involves low-sensitive parasitologic assays, making necessary serologic confirmation after 9 months of life. With the aim of implementing early diagnostic strategies suitable for minimally equipped laboratories, a T. cruzi-loop-mediated isothermal amplification (LAMP) prototype was coupled with an automated DNA-extraction device repurposed from a three-dimensional printer (PrintrLab). The whole process takes <3 hours to yield a result, with an analytical sensitivity of 0.1 to 2 parasite equivalents per milliliter, depending on the T. cruzi strain. Twenty-five blood samples from neonates born to seropositive mothers were tested blindly. In comparison to quantitative real-time PCR, the PrintrLab-LAMP dual strategy showed high agreement, while both molecular-based methodologies yielded optimal sensitivity and specificity with respect to microscopy-based diagnosis of congenital Chagas disease. PrintrLab-LAMP detected all 10 congenitally transmitted T. cruzi infections, showing promise for point-of-care early diagnosis of congenital Chagas disease.
Copyright © 2021 Association for Molecular Pathology and American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.