Cell-surface engineering of yeasts for whole-cell biocatalysts

Bioprocess Biosyst Eng. 2021 Jun;44(6):1003-1019. doi: 10.1007/s00449-020-02484-5. Epub 2021 Jan 3.

Abstract

Due to the unique advantages comparing with traditional free enzymes and chemical catalysis, whole-cell biocatalysts have been widely used to catalyze reactions effectively, simply and environment friendly. Cell-surface display technology provides a novel and effective approach for improved whole-cell biocatalysts expressing heterologous enzymes on the cell surface. They can overcome the substrate transport limitation of the intracellular expression and provide the enzymes with enhanced properties. Among all the host surface-displaying microorganisms, yeast is ideally suitable for constructing whole cell-surface-displaying biocatalyst, because of the large cell size, the generally regarded as safe (GRAS) status, and the perfect post-translational processing of secreted proteins. Yeast cell-surface display system has been a promising and powerful method for development of novel and improved engineered biocatalysts. In this review, the characterization and principles of yeast cell-surface display and the applications of yeast cell-surface display in engineered whole-cell biocatalysts as well as the improvement of the enzyme efficiency are summarized and discussed.

Keywords: Biocatalyst; CBP; Cell-surface display; Heterologous enzymes; Yeast.

Publication types

  • Review

MeSH terms

  • Biocatalysis*
  • Cell Membrane* / genetics
  • Cell Membrane* / metabolism
  • Membrane Proteins* / genetics
  • Membrane Proteins* / metabolism
  • Metabolic Engineering*
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism

Substances

  • Membrane Proteins
  • Saccharomyces cerevisiae Proteins