Clonal evolution in diffuse large B-cell lymphoma with central nervous system recurrence

ESMO Open. 2021 Feb;6(1):100012. doi: 10.1016/j.esmoop.2020.100012. Epub 2021 Jan 4.

Abstract

Background: The prognosis of patients with secondary central nervous system lymphoma (SCNSL) is poor and despite massive advances in understanding the mutational landscape of primary diffuse large B-cell lymphoma (DLBCL), the genetic comparison to SCNSL is still lacking. We therefore collected paired samples from six patients with DLBCL with available biopsies from a lymph node (LN) at primary diagnosis and the central nervous system (CNS) at recurrence.

Patients and methods: A targeted, massively parallel sequencing approach was used to analyze 216 genes recurrently mutated in DLBCL. Healthy tissue from each patient was also sequenced in order to exclude germline mutations. The results of the primary biopsies were compared with those of the CNS recurrences to depict the genetic background of SCNSL and evaluate clonal evolution.

Results: Sequencing was successful in five patients, all of whom had at least one discordant mutation that was not detected in one of their samples. Four patients had mutations that were found in the CNS but not in the primary LN. Discordant mutations were found in genes known to be important in lymphoma biology such as MYC, CARD11, EP300 and CCND3. Two patients had a Jaccard similarity coefficient below 0.5 indicating substantial genetic differences between the primary LN and the CNS recurrence.

Conclusions: This analysis gives an insight into the genetic landscape of SCNSL and confirms the results of our previous study on patients with systemic recurrence of DLBCL with evidence of substantial clonal diversification at relapse in some patients, which might be one of the mechanisms of treatment resistance.

Keywords: clonal evolution; diffuse large B-cell lymphoma; massively parallel sequencing; secondary central nervous system lymphoma.