Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells

Antioxid Redox Signal. 2021 Jun 20;34(18):1428-1483. doi: 10.1089/ars.2020.8146. Epub 2021 Feb 19.


Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.

Keywords: NRF2 inhibitors; NRF2-KEAP1; cancer; chemotherapy; oxidative stress; reactive oxygen species; redox therapy.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Drug Resistance, Neoplasm / drug effects
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Kelch-Like ECH-Associated Protein 1 / metabolism*
  • NF-E2-Related Factor 2 / metabolism*
  • Neoplasms / drug therapy
  • Neoplasms / metabolism*
  • Oxidation-Reduction / drug effects
  • Signal Transduction / drug effects


  • Antineoplastic Agents
  • KEAP1 protein, human
  • Kelch-Like ECH-Associated Protein 1
  • NF-E2-Related Factor 2
  • NFE2L2 protein, human