Anaerobic co-digestion of fruit and vegetable waste: Synergy and process stability analysis

J Air Waste Manag Assoc. 2021 May;71(5):620-632. doi: 10.1080/10962247.2021.1873206. Epub 2021 Feb 26.

Abstract

Anaerobic mono- and co-digestion of fruits and vegetable waste (FVW), slaughterhouse waste (SHW), and cattle manure (CM) under mesophilic conditions (35°C) were conducted through biochemical methane potential tests to investigate how the FVW in a co-substrate formulation improves the methane yield, the degradative synergy between substrates, and especially the stability of the process. The co-digestion of FVW:SHW and FVW:CM were evaluated with volatile solids (VS) ratios of 1:2, 1:1, and 2:1. The results indicated that the highest synergistic effect was found in the co-digestion FVW:CM at 1:1 VS ratio. However, the co-digestion FWV:SHW at 1:2 VS ratio increased the methane yield by 74.2% compared to the mono-digestion of FVW (776.3 mL CH4 g VSadded-1). As a critical condition in these processes, the stability was evaluated using the early warning indicator VFA/TA (volatile fatty acids/total alkalinity). The co-substrate SHW promotes greater stability in methane production as the soluble carbohydrate content in FVW increases. It was proposed that the high protein (49.04 ± 0.96% VS) and ammonia content (693 ± 3 mg L-1) of SHW leads to the formation of a dampening system known as a carbonate-acetic buffer. It was concluded that balanced distribution between carbohydrates, proteins, and lipids is crucial to increase methane yields, and the low methane productions were associated with low N-NH4+ concentrations (FVW:CM co-digestions). The results obtained in this study can serve as a basis to design full-scale digesters under similar operating conditions and with the same substrate:co-substrate relationships.Implications: The production of methane from the anaerobic digestion process of food, and lose waste presents a viable alternative of valorization and could help to mitigate environmental impacts. However, anaerobic digestion from these substrates carries high instabilities and low methane yields. The need to increase these yields and contribute to process stability must be considered in the selection of a co-substrate. In this context, this work aims to evaluate the best fruits and vegetable waste: co-substrateformulation, that promotes higher methane yield, a synergy between substrates, and to improve the AD process stability in the presence of perturbations in the substrate composition. We believe that our results could be helpful for the design processes for methane production from fruit and vegetable waste, to contribute to competitiveness with conventional energies and promote the sustainability of these processes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaerobiosis
  • Animals
  • Bioreactors
  • Cattle
  • Digestion
  • Fruit*
  • Vegetables*