Spontaneous Formation of Double Emulsions at Particle-Laden Interfaces

J Colloid Interface Sci. 2021 Apr:587:510-521. doi: 10.1016/j.jcis.2020.10.064. Epub 2020 Oct 21.

Abstract

Hypothesis: Traditionally, double emulsions are produced in the presence of both oil-soluble and water-soluble surfactants in sequential droplet formation settings or unique fluidic designs. Micelles, assemblies of surfactants in liquid mediums, can generate single emulsion droplets without requiring input energy. We hypothesize that the synergy between nanoparticles in one phase, and micelles in the other phase can spontaneously generate double emulsions. Nanoparticles can become surface-activated by adsorbing surfactants and form the second type of emulsions from the initially emulsified phase by micelles.

Experiments: We design a thermodynamically-driven emulsification platform where double emulsions are spontaneously formed as soon an aqueous nanoparticle dispersion is placed in contact with an oleic micellar solution. Confocal and cryogenic-scanning electron microscopies are utilized to characterize structure and intensity of emulsions at various concentrations of silica nanoparticle and Span micelles. The rate of particle surface activation and emulsification and the amount of water intake are quantified using dynamic light scattering, dynamic interfacial tension, and density measurements.

Findings: Nanoscale water droplets nucleate in the oil in form of swollen micelles. Over time, nanoparticles form a water-shell encapsulating the swollen-micelle rich oil phase. The gradual surfaceactivation of nanoparticles is key in self-double emulsification and controlling the emulsion intensity. We build on this new discovery and design a novel system for double emulsification. Incorporating nanoparticles into spontaneous emulsification systems opens novel routes for designing emulsion-based materials.

Keywords: Core-shell structured emulsions; Double emulsions; Particle-stabilized double emulsions; Spontaneous emulsification.