Pollution characteristics and risk assessment of surface sediments in the urban lakes

Environ Sci Pollut Res Int. 2021 May;28(17):22022-22037. doi: 10.1007/s11356-020-11831-8. Epub 2021 Jan 7.

Abstract

The objective of the manuscript was to evaluate the concentration and distribution of nutrients and heavy metals (HMs) in the sediments of urban lakes, as well as the potential ecological risk to the lake. This paper discusses the risk assessment and its management via potential nature-based solutions (NBS), which are lessons learnt from nature. The HM pollution and potential ecological risk were evaluated using conventional geo-accumulation index (GI) and geo-accumulation vector (GV) model. So urban lakes are usually more of a source of pollution than non-urban lakes, and more widely based on the literature on lake sediment pollution assessments in China over the past 10 years, 42 urban lakes, and 5 typical non-urban lakes (five representative freshwater lakes in China) were selected. The average concentrations of total nitrogen (TN); total phosphorus (TP); and Cu, Zn, Pb, Cr, Cd, Ni, As, and Hg were 2382, 712, 33.10, 118.05, 38.30, 66.40, 0.82, 32.38, 11.33, and 0.12 mg/kg, respectively. The pollution levels of nutrients and HMs in sediments were evaluated using a single pollution index, a comprehensive pollution index, a ground accumulation index, a potential ecological risk index, and a sediment quality index. The evaluation results showed that the overall pollution level of urban lake sediments in China was higher than that of the selected five typical non-urban lakes, and the problem of nitrogen pollution in sediments was more prominent. There was no significant difference in the potential risk assessment of HMs between urban lakes and typical non-urban lakes, but the probability of negative biological effects was significant. The surface sediments from the estuaries of the tributaries flowing downtowns and heavy industrial parks showed high heavy metal pollution levels and potential ecological risk. The HM pollution and environmental risk assessment of the sediments from urban lakes is of great significance.

Keywords: Heavy metal; Nutrient; Sediment; Urban lakes.

MeSH terms

  • China
  • Environmental Monitoring
  • Geologic Sediments
  • Lakes
  • Metals, Heavy* / analysis
  • Risk Assessment
  • Water Pollutants, Chemical* / analysis

Substances

  • Metals, Heavy
  • Water Pollutants, Chemical