Estimating the marginal hazard ratio by simultaneously using a set of propensity score models: A multiply robust approach
- PMID: 33410157
- DOI: 10.1002/sim.8837
Estimating the marginal hazard ratio by simultaneously using a set of propensity score models: A multiply robust approach
Abstract
The inverse probability weighted Cox model is frequently used to estimate the marginal hazard ratio. Its validity requires a crucial condition that the propensity score model be correctly specified. To provide protection against misspecification of the propensity score model, we propose a weighted estimation method rooted in the empirical likelihood theory. The proposed estimator is multiply robust in that it is guaranteed to be consistent when a set of postulated propensity score models contains a correctly specified model. Our simulation studies demonstrate satisfactory finite sample performance of the proposed method in terms of consistency and efficiency. We apply the proposed method to compare the risk of postoperative hospitalization between sleeve gastrectomy and Roux-en-Y gastric bypass using data from a large medical claims and billing database. We further extend the development to multisite studies to enable each site to postulate multiple site-specific propensity score models.
Keywords: Cox model; inverse probability weighting; marginal hazard ratio; multiple robustness; propensity score.
© 2021 John Wiley & Sons, Ltd.
Similar articles
-
Multiply robust estimation of causal quantile treatment effects.Stat Med. 2020 Dec 10;39(28):4238-4251. doi: 10.1002/sim.8722. Epub 2020 Aug 28. Stat Med. 2020. PMID: 32857876
-
Multiply robust causal inference of the restricted mean survival time difference.Stat Methods Med Res. 2023 Dec;32(12):2386-2404. doi: 10.1177/09622802231211009. Epub 2023 Nov 15. Stat Methods Med Res. 2023. PMID: 37965684
-
Variance estimation in inverse probability weighted Cox models.Biometrics. 2021 Sep;77(3):1101-1117. doi: 10.1111/biom.13332. Epub 2020 Aug 3. Biometrics. 2021. PMID: 32662087
-
Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies.Stat Med. 2015 Dec 10;34(28):3661-79. doi: 10.1002/sim.6607. Epub 2015 Aug 3. Stat Med. 2015. PMID: 26238958 Free PMC article. Review.
-
Causal inference with a quantitative exposure.Stat Methods Med Res. 2016 Feb;25(1):315-35. doi: 10.1177/0962280212452333. Epub 2012 Jun 22. Stat Methods Med Res. 2016. PMID: 22729475 Review.
Cited by
-
Multiply robust estimator for the difference in survival functions using pseudo-observations.BMC Med Res Methodol. 2023 Oct 23;23(1):247. doi: 10.1186/s12874-023-02065-6. BMC Med Res Methodol. 2023. PMID: 37872495 Free PMC article.
-
An improved multiply robust estimator for the average treatment effect.BMC Med Res Methodol. 2023 Oct 11;23(1):231. doi: 10.1186/s12874-023-02056-7. BMC Med Res Methodol. 2023. PMID: 37821829 Free PMC article.
-
Robust causal inference of drug-drug interactions.Stat Med. 2023 Mar 30;42(7):970-992. doi: 10.1002/sim.9653. Epub 2023 Jan 10. Stat Med. 2023. PMID: 36627826 Free PMC article.
References
-
- Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite universe. J Am Stat Assoc. 1952;47(260):663-685.
-
- Rosenbaum PR. Model-based direct adjustment. J Am Stat Assoc. 1987;82(398):387-394.
-
- Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med. 2004;23(19):2937-2960.
-
- Cole SR, Hernán MA. Adjusted survival curves with inverse probability weights. Comput Methods Prog Biomed. 2004;75(1):45-49.
-
- Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. Am J Epidemiol. 2008;168(6):656-664.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
