Brain-Specific Biomarkers as Mortality Predictors after Aneurysmal Subarachnoid Haemorrhage

J Clin Med. 2020 Dec 20;9(12):4117. doi: 10.3390/jcm9124117.

Abstract

Aneurysmal subarachnoid haemorrhage (aSAH) is a serious condition with a high mortality and high permanent disability rate for those who survive the initial haemorrhage. The purpose of this study was to investigate markers specific to the central nervous system as potential in-hospital mortality predictors after aSAH. In patients with an external ventricular drain, enolase, S100B, and GFAP levels were measured in the blood and cerebrospinal fluid (CSF) on days 1, 2, and 3 after aSAH. Compared to survivors, non-survivors showed a significantly higher peak of S100B and enolase levels in the blood (S100B: 5.7 vs. 1.5 ng/mL, p = 0.031; enolase: 6.1 vs. 1.4 ng/mL, p = 0.011) and the CSF (S100B: 18.3 vs. 0.9 ng/mL, p = 0.042; enolase: 109.2 vs. 6.1 ng/mL, p = 0.015). Enolase showed the highest level of predictability at 1.8 ng/mL in the blood (AUC of 0.873) and 80.0 ng/mL in the CSF (AUC of 0.889). The predictive ability of S100B was also very good with a threshold of 5.7 ng/mL in the blood (AUC 0.825) and 4.5 ng/mL in the CSF (AUC 0.810). In conclusion, enolase and S100B, but not GFAP, might be suitable as biomarkers for the early prediction of in-hospital mortality after aSAH.

Keywords: GFAP; S100B protein; brain damage markers; cerebrospinal fluid; enolase; outcome; subarachnoid haemorrhage.