Robust Nitritation of Anaerobic Digester Centrate Using Dual Stressors and Timed Alkali Additions

Environ Sci Technol. 2021 Feb 2;55(3):2016-2026. doi: 10.1021/acs.est.0c04613. Epub 2021 Jan 14.

Abstract

Nitrogen is commonly removed from wastewater by nitrification to nitrate followed by nitrate reduction to N2. Shortcut N removal saves energy by limiting ammonia oxidation to nitrite, but nitrite accumulation can be unstable. We hypothesized that repeated short-term exposures of ammonia-oxidizing communities to free ammonia (FA) and free nitrous acid (FNA) would stabilize nitritation by selecting against nitrite-oxidizing bacteria (NOB). Accordingly, we evaluated ammonium oxidation of anaerobic digester centrate in two bench-scale sequencing batch reactors (SBRs), seeded with the same inoculum and operated identically but with differing pH-control strategies. A single stressor SBR (SS/SBR) using pH set-point control produced HNO3, while a dual stressor SBR (DS/SBR) using timed alkalinity addition (TAA) produced HNO2 (ammonium removal efficiency of 97 ± 2%; nitrite accumulation ratio of 98 ± 1%). The TAA protocol was developed during an adaptation period with continuous pH monitoring. After adaptation, automated TAA enabled stable nitritation without set-point control. In the SS/SBR, repeatedly exposing the community to FA (8-10 h/exposure, one exposure/cycle) selected for FA-tolerant ammonia-oxidizing bacteria (Nitrosomonas sp. NM107) and NOB (Nitrobacter sp.). In the DS/SBR, repeatedly exposing the community to FA (2-4 h/exposure, three exposures/cycle) and FNA (4-6 h/exposure, two exposures/cycle) selected for FA- and FNA-resistant AOB (Nitrosomonas IWT514) and against NOB, stabilizing nitritation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alkalies*
  • Ammonia
  • Anaerobiosis
  • Bioreactors*
  • Nitrification
  • Nitrites
  • Nitrobacter
  • Nitrogen
  • Oxidation-Reduction

Substances

  • Alkalies
  • Nitrites
  • Ammonia
  • Nitrogen