Evaluation of Exosome Proteins by on-Bead Flow Cytometry

Cytometry A. 2020 Jul 23. doi: 10.1002/cyto.a.24193. Online ahead of print.

Abstract

Exosomes, recently re-named "small extracellular vesicles" or "sEV," are emerging as an intercellular communication system. Quantification of the molecular cargo exosomes carry by on-bead flow cytometry is needed for defining their role in information transfer and in human disease. Exosomes (sEV) isolated from cell supernatants or plasma of cancer patients by size-exclusion chromatography were captured by biotinylated antibodies specific for antigens in the exosome cargo (e.g., tetraspanins) and placed on streptavidin-labeled beads. Detection was performed with pretitered fluorochrome-labeled antibodies of desired specificity. The data were acquired in a conventional cytometer, and molecules of equivalent soluble fluorochrome (MESF) beads were used to quantify the number of fluorescent molecules bound per bead. Isotype antibody controls were obligatory. The mean fluorescence intensity (MFI) value of each sample was converted into MESF units, and the separation index (SI), which quantifies separation of stained and isotype control beads, was determined. Various proteins identified by labeled antibodies were quantified on the surface of tumor cell-derived exosomes. To identify intravesicular cargo, such as cytokines or chemokines, exosomes were lysed with 0.3% Triton-100, and the proteins in lysates were loaded on aldehyde/sulfate latex beads for flow cytometry. Examples of quantitative surface and/or intravesicular on-bead flow cytometry for exosomes produced by various cells or present in body fluids of cancer patients are provided. On-bead flow cytometry standardized for use with conventional cytometers is a useful method for protein detection and quantitation in exosomes isolated from supernatants of cell lines or plasma of patients with cancer. © 2020 International Society for Advancement of Cytometry.

Keywords: MESF; antibody‐based capture; exosomes; mean fluorescence intensity (MFI); on‐bead flow cytometry; protein quantification; sEV; separation index (SI).