Triple Functional AB2 Unit-Modulated Facile Preparation of Bioreducible Hyperbranched Copolymers

ACS Biomater Sci Eng. 2020 May 11;6(5):2812-2821. doi: 10.1021/acsbiomaterials.0c00261. Epub 2020 Apr 17.

Abstract

Facile preparation of hyperbranched polymers (HPs) has been advanced tremendously by the use of either various multifunctional agent-mediated controlled living radical polymerizations or a highly reactive ABx unit-modulated self-stepwise polymerizations. However, it remains, to our knowledge, a significant challenge to prepare HPs with simultaneously precisely controlled degree of branching (DB) and biorelevant signal-triggered degradation property for controlled release applications due to the respective limitations of the aforementioned two strategies. For this purpose, a triple functional AB2 unit, A-SS-B2 chain transfer agent (AB2 CTA), that integrates the merits of both multifunctional agents and highly reactive ABx units was designed and synthesized successfully to include a disulfide bond for reduction-triggered polymer degradation toward promoted intracellular release of encapsulated cargoes, a trithiocarbonate group for a universal reversible addition-fragmentation chain transfer (RAFT) polymerization of any vinyl-based monomer, and three terminal groups consisting of one azide and two alkyne functions for the generation of hyperbranched topology via a self-click coupling-based polymerization. A subsequent self-click polymerization of the resulting AB2 CTA by click coupling in the presence of CuSO4·5H2O and sodium ascorbate (NaVc) generated a hyperbranched polymer template (HPT) with precisely modulated DB and a plurality of CTA units for a universal reversible addition-fragmentation chain transfer (RAFT) polymerization of any vinyl-containing monomer. The HPT was next used as a multimacro-CTA for RAFT polymerization of a typical hydrophilic monomer, oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA), to demonstrate the potential of this HPT for a robust and facile production of bioreducible hyperbranched polymers for controlled release applications. The synthesized HPT-4-POEGMA can form unimolecular micelles with enhanced stability due to the hyperbranched structure, and the size of micelles varied in the range from 82.4 to 140.3 nm by a modulation of the molar feed ratio of monomer to HPT and polymerization time. More importantly, HPT-POEGMA micelles incubated with 10 mM glutathione (GSH) showed reduction-triggered cleavage of the disulfide links and polymer degradation for promoted intracellular doxorubicin (DOX) release and enhanced therapeutic efficiency. Taken together, this triple functional AB2 CTA provided a powerful means for the facile preparation of bioreducible hyperbranched polymers with precisely controlled DB for controlled release applications.

Keywords: AB2 unit; RAFT polymerization; click coupling; controlled drug release; hyperbranched polymer template.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Doxorubicin
  • Methacrylates
  • Micelles*
  • Polymerization
  • Polymers*

Substances

  • Methacrylates
  • Micelles
  • Polymers
  • Doxorubicin