Customizable Composite Fibers for Engineering Skeletal Muscle Models

ACS Biomater Sci Eng. 2020 Feb 10;6(2):1112-1123. doi: 10.1021/acsbiomaterials.9b00992. Epub 2020 Jan 9.


Engineering tissue-like scaffolds that can mimic the microstructure, architecture, topology, and mechanical properties of native tissues while offering an excellent environment for cellular growth has remained an unmet need. To address these challenges, multicompartment composite fibers are fabricated. These fibers can be assembled through textile processes to tailor tissue-level mechanical and electrical properties independent of cellular level components. Textile technologies also allow control of the distribution of different cell types and the microstructure of fabricated constructs and the direction of cellular growth within the 3D microenvironment. Here, we engineered composite fibers from biocompatible cores and biologically relevant hydrogel sheaths. The fibers are mechanically robust to being assembled using textile processes and could support adhesion, proliferation, and maturation of cell populations important for the engineering of skeletal muscles. We also demonstrated that the changes in the coating of the multicompartment fibers could potentially enhance myogenesis in vitro.

Keywords: biotextiles; interpenetrating network hydrogels; organ weaving; reinforced fibers; skeletal muscles; tissue engineering.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Proliferation
  • Hydrogels
  • Muscle, Skeletal
  • Tissue Engineering*
  • Tissue Scaffolds*


  • Hydrogels