Effect of Equal Channel Angular Pressing on the Dynamic Softening Behavior of Ti-6Al-4V Alloy in the Hot Deformation Process

Materials (Basel). 2021 Jan 5;14(1):232. doi: 10.3390/ma14010232.

Abstract

To investigate the effect of equal channel angular pressing (ECAP) on the deformation of Ti-6Al-4V alloy at a higher temperature, hot compression tests were conducted on alloys having two different initial microstructures (the original alloy (Pre-ECAP) and ECAP-deformed alloy (Post-ECAP)). Post-ECAP, the alloy showed a higher degree of dynamic softening during the hot deformation process due to its finer grain size and higher distortion energy. The flow stress of Post-ECAP alloy was higher than the Pre-ECAP alloy at 500 °C when ε˙= 0.003 s-1. However, the stress of the Post-ECAP alloy decreased rapidly with increasing temperature and strain rate, until the stress value was much lower than that of Pre-ECAP at 700 °C when ε˙= 0.03 s-1. The value of the dynamic softening coefficient revealed that the dynamic softening behavior of Post-ECAP was more pronounced than that of Pre-ECAP in the hot compression deformation process. The main dynamic softening mechanism of Pre-ECAP is dynamic recovery, while the dynamic recrystallization process plays a more important role in the deformation process of Post-ECAP alloy. The microstructures observation results showed that dynamic recrystallization was more likely to occur to Post-ECAP alloys under the same deformation condition. Almost fully dynamic recrystallization had occurred in the deformation process of Post-ECAP at 700 °C and a strain rate of ε˙= 0.01 s-1. The grains of Post-ECAP alloys were further refined. The Post-ECAP alloy exhibits better plastic deformation at temperatures higher than 600 °C due to its significant dynamic recrystallization.

Keywords: dynamic softening; equal channel angular pressing; hot deformation behavior; titanium alloy.