Training with Multiple Structurally Related Odorants Fails to Improve Generalization of Ammonium Nitrate Detection in Domesticated Dogs ( Canis familiaris)

Animals (Basel). 2021 Jan 16;11(1):213. doi: 10.3390/ani11010213.


A critical aspect of canine scent detection involves the animal's ability to respond to odors based on prior odor training. In the current study, dogs (n = 12) were initially trained on an olfactory simple discrimination task using vanillin as the target odorant. Based on their performance on this task, dogs were assigned to experimental groups. Dogs in group 1 and 2 (n = 5 dogs/group; 1 dog/group were removed due to low motivation or high error rates) were trained with either two or six forms of ammonium nitrate (AN), respectively. Dogs were then assessed with a mock explosive with AN and powdered aluminum. Dogs in both groups failed to respond to the novel AN-aluminum odor. Mean success rates were 56 ± 5 and 54 ± 4% for groups 1 and 2, respectively. Overall, and individual dog performance was not statistically higher than chance indicating that dogs did not generalize from AN to a similar AN-based odorant at reliable levels desired for explosive detection dogs. These results suggest the use of authentic explosive materials, without the added complication of including category-learning methods, likely remains a cost-effective and efficient way to train explosive scent detection dogs.

Keywords: canine; categorical formation; improvised explosive device; scent detection.