Bulk-disclination correspondence in topological crystalline insulators
- PMID: 33473227
- DOI: 10.1038/s41586-020-03125-3
Bulk-disclination correspondence in topological crystalline insulators
Abstract
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge1-6. However, the bulk-edge correspondence-which has been widely used in experiments to determine the band topology from edge properties-is inadequate in discerning various topological crystalline phases7-16, leading to challenges in the experimental classification of the large family of topological crystalline materials4-6. It has been theoretically predicted that disclinations-ubiquitous crystallographic defects-can provide an effective probe of crystalline topology beyond edges17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns-a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.
Comment in
-
Electrons broken into pieces at crystal defects.Nature. 2021 Jan;589(7842):356-357. doi: 10.1038/d41586-021-00079-y. Nature. 2021. PMID: 33473222 No abstract available.
Similar articles
-
Observation of nonlinear disclination states.Light Sci Appl. 2023 Aug 10;12(1):194. doi: 10.1038/s41377-023-01235-x. Light Sci Appl. 2023. PMID: 37558694 Free PMC article.
-
Trapped fractional charges at bulk defects in topological insulators.Nature. 2021 Jan;589(7842):376-380. doi: 10.1038/s41586-020-03117-3. Epub 2021 Jan 20. Nature. 2021. PMID: 33473226
-
Observation of Topological p-Orbital Disclination States in Non-Euclidean Acoustic Metamaterials.Phys Rev Lett. 2022 Oct 7;129(15):154301. doi: 10.1103/PhysRevLett.129.154301. Phys Rev Lett. 2022. PMID: 36269958
-
Pressure induced topological and topological crystalline insulators.J Phys Condens Matter. 2022 Aug 23;34(42). doi: 10.1088/1361-648X/ac8906. J Phys Condens Matter. 2022. PMID: 35952626 Review.
-
Experimental Advances in Nanoparticle-Driven Stabilization of Liquid-Crystalline Blue Phases and Twist-Grain Boundary Phases.Nanomaterials (Basel). 2021 Nov 5;11(11):2968. doi: 10.3390/nano11112968. Nanomaterials (Basel). 2021. PMID: 34835732 Free PMC article. Review.
Cited by
-
Finite barrier bound state.Light Sci Appl. 2024 Mar 8;13(1):69. doi: 10.1038/s41377-024-01417-1. Light Sci Appl. 2024. PMID: 38453882 Free PMC article.
-
A scheme for realizing nonreciprocal interlayer coupling in bilayer topological systems.Front Optoelectron. 2023 Nov 27;16(1):38. doi: 10.1007/s12200-023-00094-z. Front Optoelectron. 2023. PMID: 38010425 Free PMC article.
-
Bulk-local-density-of-state correspondence in topological insulators.Nat Commun. 2023 Nov 14;14(1):7347. doi: 10.1038/s41467-023-42449-2. Nat Commun. 2023. PMID: 37963897 Free PMC article.
-
Observation of nonlinear disclination states.Light Sci Appl. 2023 Aug 10;12(1):194. doi: 10.1038/s41377-023-01235-x. Light Sci Appl. 2023. PMID: 37558694 Free PMC article.
-
Topological solitonic macromolecules.Nat Commun. 2023 Jul 29;14(1):4581. doi: 10.1038/s41467-023-40335-5. Nat Commun. 2023. PMID: 37516736 Free PMC article.
References
-
- Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011). - DOI
-
- Slager, R.-J., Mesaros, A., Juričić, V. & Zaanen, J. The space group classification of topological band-insulators. Nat. Phys. 9, 98–102 (2013). - DOI
-
- Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017); correction 582, E14 (2020). - DOI
-
- Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019). - DOI
-
- Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019); correction 582, E13 (2020). - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
