Confirming the Presence of Legionella pneumophila in Your Water System: A Review of Current Legionella Testing Methods

J AOAC Int. 2021 Aug 20;104(4):1135-1147. doi: 10.1093/jaoacint/qsab003.

Abstract

Legionnaires' disease has been recognized since 1976 and Legionella pneumophila still accounts for more than 95% of cases. Approaches in countries, including France, suggest that focusing risk reduction specifically on L. pneumophila is an effective strategy, as detecting L. pneumophila has advantages over targeting multiple species of Legionella. In terms of assays, the historically accepted plate culture method takes 10 days for confirmed Legionella spp. results, has variabilities which affect trending and comparisons, requires highly trained personnel to identify colonies on a plate in specialist laboratories, and does not recover viable-but-non-culturable bacteria. PCR is sensitive, specific, provides results in less than 24 h, and determines the presence/absence of Legionella spp. and/or L. pneumophila DNA. Whilst specialist personnel and laboratories are generally required, there are now on-site PCR options, but there is no agreement on comparing genome units to colony forming units and action limits. Immunomagnetic separation assays are culture-independent, detect multiple Legionella species, and results are available in 24 h, with automated processing options. Field-use lateral flow devices provide presence/absence determination of L. pneumophila serogroup 1 where sufficient cells are present, but testing potable waters is problematic. Liquid culture most probable number (MPN) assays provide confirmed L. pneumophila results in 7 days that are equivalent to or exceed plate culture, are robust and reproducible, and can be performed in a variety of laboratory settings. MPN isolates can be obtained for epidemiological investigations. This accessible, non-technical review will be of particular interest to building owners, operators, risk managers, and water safety groups and will enable them to make informed decisions to reduce the risk of L. pneumophila.

Publication types

  • Review

MeSH terms

  • Drinking Water*
  • Humans
  • Legionella pneumophila*
  • Legionella*
  • Legionnaires' Disease*
  • Water Microbiology

Substances

  • Drinking Water