Spontaneous electrical low-frequency oscillations: a possible role in Hydra and all living systems

Philos Trans R Soc Lond B Biol Sci. 2021 Mar 15;376(1820):20190763. doi: 10.1098/rstb.2019.0763. Epub 2021 Jan 25.

Abstract

As one of the first model systems in biology, the basal metazoan Hydra has been revealing fundamental features of living systems since it was first discovered by Antonie van Leeuwenhoek in the early eighteenth century. While it has become well-established within cell and developmental biology, this tiny freshwater polyp is only now being re-introduced to modern neuroscience where it has already produced a curious finding: the presence of low-frequency spontaneous neural oscillations at the same frequency as those found in the default mode network in the human brain. Surprisingly, increasing evidence suggests such spontaneous electrical low-frequency oscillations (SELFOs) are found across the wide diversity of life on Earth, from bacteria to humans. This paper reviews the evidence for SELFOs in diverse phyla, beginning with the importance of their discovery in Hydra, and hypothesizes a potential role as electrical organism organizers, which supports a growing literature on the role of bioelectricity as a 'template' for developmental memory in organism regeneration. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.

Keywords: Hydra; default mode network; integration; organism organizer; self; spontaneous electrical low-frequency oscillations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Electrophysiological Phenomena / physiology*
  • Eukaryotic Cells / physiology*
  • Hydra / physiology*
  • Invertebrates / physiology*
  • Plant Physiological Phenomena*
  • Prokaryotic Cells / physiology*
  • Vertebrates / physiology*