Prospective mapping of viral mutations that escape antibodies used to treat COVID-19
- PMID: 33495308
- PMCID: PMC7963219
- DOI: 10.1126/science.abf9302
Prospective mapping of viral mutations that escape antibodies used to treat COVID-19
Abstract
Antibodies are a potential therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the risk of the virus evolving to escape them remains unclear. Here we map how all mutations to the receptor binding domain (RBD) of SARS-CoV-2 affect binding by the antibodies in the REGN-COV2 cocktail and the antibody LY-CoV016. These complete maps uncover a single amino acid mutation that fully escapes the REGN-COV2 cocktail, which consists of two antibodies, REGN10933 and REGN10987, targeting distinct structural epitopes. The maps also identify viral mutations that are selected in a persistently infected patient treated with REGN-COV2 and during in vitro viral escape selections. Finally, the maps reveal that mutations escaping the individual antibodies are already present in circulating SARS-CoV-2 strains. These complete escape maps enable interpretation of the consequences of mutations observed during viral surveillance.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Figures
Update of
-
Prospective mapping of viral mutations that escape antibodies used to treat COVID-19.bioRxiv [Preprint]. 2020 Dec 1:2020.11.30.405472. doi: 10.1101/2020.11.30.405472. bioRxiv. 2020. Update in: Science. 2021 Feb 19;371(6531):850-854. doi: 10.1126/science.abf9302 PMID: 33299993 Free PMC article. Updated. Preprint.
Similar articles
-
Prospective mapping of viral mutations that escape antibodies used to treat COVID-19.bioRxiv [Preprint]. 2020 Dec 1:2020.11.30.405472. doi: 10.1101/2020.11.30.405472. bioRxiv. 2020. Update in: Science. 2021 Feb 19;371(6531):850-854. doi: 10.1126/science.abf9302 PMID: 33299993 Free PMC article. Updated. Preprint.
-
Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition.Cell Host Microbe. 2021 Jan 13;29(1):44-57.e9. doi: 10.1016/j.chom.2020.11.007. Epub 2020 Nov 19. Cell Host Microbe. 2021. PMID: 33259788 Free PMC article.
-
Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies.Nature. 2021 May;593(7857):136-141. doi: 10.1038/s41586-021-03412-7. Epub 2021 Mar 11. Nature. 2021. PMID: 33706364 Free PMC article.
-
Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.In: Kirtsoglou E, Simpson B, editors. The Time of Anthropology: Studies of Contemporary Chronopolitics. Abingdon: Routledge; 2020. Chapter 5. In: Kirtsoglou E, Simpson B, editors. The Time of Anthropology: Studies of Contemporary Chronopolitics. Abingdon: Routledge; 2020. Chapter 5. PMID: 36137063 Free Books & Documents. Review.
-
COVID-19 Vaccines: "Warp Speed" Needs Mind Melds, Not Warped Minds.J Virol. 2020 Aug 17;94(17):e01083-20. doi: 10.1128/JVI.01083-20. Print 2020 Aug 17. J Virol. 2020. PMID: 32591466 Free PMC article. Review.
Cited by
-
Individuals cannot rely on COVID-19 herd immunity: Durable immunity to viral disease is limited to viruses with obligate viremic spread.PLoS Pathog. 2021 Apr 26;17(4):e1009509. doi: 10.1371/journal.ppat.1009509. eCollection 2021 Apr. PLoS Pathog. 2021. PMID: 33901246 Free PMC article. No abstract available.
-
Mammalian Antigen Display for Pandemic Countermeasures.Methods Mol Biol. 2024;2762:191-216. doi: 10.1007/978-1-0716-3666-4_12. Methods Mol Biol. 2024. PMID: 38315367
-
Neutralizing Antibody Therapeutics for COVID-19.Viruses. 2021 Apr 7;13(4):628. doi: 10.3390/v13040628. Viruses. 2021. PMID: 33916927 Free PMC article. Review.
-
Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1.Nat Commun. 2022 Nov 16;13(1):7011. doi: 10.1038/s41467-022-34506-z. Nat Commun. 2022. PMID: 36384919 Free PMC article.
-
Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains.PLoS Pathog. 2022 Nov 18;18(11):e1010951. doi: 10.1371/journal.ppat.1010951. eCollection 2022 Nov. PLoS Pathog. 2022. PMID: 36399443 Free PMC article.
References
-
- Caskey M., Klein F., Lorenzi J. C. C., Seaman M. S., West A. P. Jr.., Buckley N., Kremer G., Nogueira L., Braunschweig M., Scheid J. F., Horwitz J. A., Shimeliovich I., Ben-Avraham S., Witmer-Pack M., Platten M., Lehmann C., Burke L. A., Hawthorne T., Gorelick R. J., Walker B. D., Keler T., Gulick R. M., Fätkenheuer G., Schlesinger S. J., Nussenzweig M. C., Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522, 487–491 (2015). 10.1038/nature14411 - DOI - PMC - PubMed
-
- Kugelman J. R., Kugelman-Tonos J., Ladner J. T., Pettit J., Keeton C. M., Nagle E. R., Garcia K. Y., Froude J. W., Kuehne A. I., Kuhn J. H., Bavari S., Zeitlin L., Dye J. M., Olinger G. G., Sanchez-Lockhart M., Palacios G. F., Emergence of Ebola virus escape variants in infected nonhuman primates treated with the MB-003 antibody cocktail. Cell Rep. 12, 2111–2120 (2015). 10.1016/j.celrep.2015.08.038 - DOI - PubMed
-
- Simões E. A. F., Forleo-Neto E., Geba G. P., Kamal M., Yang F., Cicirello H., Houghton M. R., Rideman R., Zhao Q., Benvin S. L., Hawes A., Fuller E. D., Wloga E., Pizarro J. M. N., Munoz F. M., Rush S. A., McLellan J. S., Lipsich L., Stahl N., Yancopoulos G. D., Weinreich D. M., Kyratsous C. A., Sivapalasingam S., Suptavumab for the prevention of medically attended respiratory syncytial virus infection in preterm infants. Clin. Infect. Dis. ciaa951 (2020). 10.1093/cid/ciaa951 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
