Targeted Nanoparticles Harboring Jasmine-Oil-Entrapped Paclitaxel for Elimination of Lung Cancer Cells

Int J Mol Sci. 2021 Jan 20;22(3):1019. doi: 10.3390/ijms22031019.

Abstract

Selectively targeted drug delivery systems are preferable chemotherapeutic platforms, as they specifically deliver the drug cargo into tumor cells, while minimizing untoward toxic effects. However, these delivery systems suffer from insufficient encapsulation efficiency (EE), encapsulation capacity (EC), and premature drug release. Herein, we coencapsulated paclitaxel (PTX) and Jasmine oil (JO) within PEG-PCL nanoparticles (NPs), with an average diameter < 50 nm, selectively targeted to non-small cell lung cancer (NSCLC) cells, via S15-aptamer (APT) decoration. JO was selected as an "adhesive" oily core to enhance PTX entrapment, as JO and PTX share similar hydrophobicity and terpenoid structure. JO markedly enhanced EE of PTX from 23% to 87.8% and EC from 35 ± 6 to 74 ± 8 µg PTX/mg PEG-PCL. JO also markedly increased the residual amount of PTX after 69 h, from 18.3% to 65%. Moreover, PTX cytotoxicity against human NSCLC A549 cells was significantly enhanced due to the co-encapsulation with JO; the IC50 value for PTX encapsulated within JO-containing APT-NPs was 20-fold lower than that for APT-NPs lacking JO. Remarkably, JO-containing APT-NPs displayed a 6-fold more potent cell-killing, relatively to the free-drug. Collectively, these findings reveal a marked synergistic contribution of JO to the cytotoxic activity of APT-NP-based systems, for targeted PTX delivery against NSCLC, which may be readily applied to various hydrophobic chemotherapeutics.

Keywords: coencapsulation; jasmine oil; lung cancer; nanoparticles; paclitaxel; synergy; targeted delivery.

MeSH terms

  • A549 Cells
  • Antineoplastic Agents / administration & dosage*
  • Humans
  • Nanoparticles / chemistry*
  • Paclitaxel / administration & dosage*
  • Plant Oils / chemistry*
  • Polyethylene Glycols / chemistry

Substances

  • Antineoplastic Agents
  • Plant Oils
  • Polyethylene Glycols
  • jasmine oil
  • Paclitaxel