The inclusion of molecular and genetic information with histopathologic information defines the framework for brain tumor classification and grading. This framework is reflected in the major restructuring of the WHO brain tumor classification system in 2016 and in numerous subsequent proposed updates reflecting ongoing developments in understanding the impact of tumor genotype on classification and grading. This incorporation of molecular and genetic features improves tumor diagnosis and prediction of tumor behavior and response to treatment. Neuroimaging is essential for the noninvasive assessment of pretreatment tumor grading and for identification and determination of therapeutic efficacy. Use of conventional neuroimaging and physiologic imaging techniques, such as diffusion- and perfusion-weighted MRI, can increase diagnostic confidence before and after treatment. Although the use of neuroimaging to consistently determine tumor genetics is not yet robust, promising developments are on the horizon. Given the complexity of the brain tumor microenvironment, the development and implementation of a standardized reporting system can aid in conveying to radiologists, referring providers, and patients important information about brain tumor response to treatment. The purpose of this article is to review the current state and role of neuroimaging in this continuously evolving field.
Keywords: MRI; brain tumor; diffusion; glioblastoma; perfusion.