During vesicular acidification, chloride (Cl-), as the counterion, provides the electrical shunt for proton pumping by the vacuolar H+ ATPase. Intracellular CLC transporters mediate Cl- influx to the endolysosomes through their 2Cl-/H+ exchange activity. However, whole-endolysosomal patch-clamp recording also revealed a mysterious conductance releasing Cl- from the lumen. It remains unknown whether CLCs or other Cl- channels are responsible for this activity. Here, we show that the newly identified proton-activated Cl- (PAC) channel traffics from the plasma membrane to endosomes via the classical YxxL motif. PAC deletion abolishes the endosomal Cl- conductance, raises luminal Cl- level, lowers luminal pH, and increases transferrin receptor-mediated endocytosis. PAC overexpression generates a large endosomal Cl- current with properties similar to those of endogenous conductance, hypo-acidifies endosomal pH, and reduces transferrin uptake. We propose that the endosomal Cl- PAC channel functions as a low pH sensor and prevents hyper-acidification by releasing Cl- from the lumen.
Keywords: ASOR; PACC1; PAORAC; TMEM206; hPAC; organellar ion channel.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.