Artificial Intelligence in Gastrointestinal Endoscopy in a Resource-constrained Setting: A Reality Check
- PMID: 33511071
- PMCID: PMC7801886
- DOI: 10.5005/jp-journals-10018-1322
Artificial Intelligence in Gastrointestinal Endoscopy in a Resource-constrained Setting: A Reality Check
Abstract
Artificial intelligence (AI) is being increasingly explored in different domains of gastroenterology, particularly in endoscopic image analysis, cancer screening, and prognostication models. It is widely touted to become an integral part of routine endoscopies, considering the bulk of data handled by endoscopists and the complex nature of critical analyses performed. However, the application of AI in endoscopy in resource-constrained settings remains fraught with problems. We conducted an extensive literature review using the PubMed database on articles covering the application of AI in endoscopy and the difficulties encountered in resource-constrained settings. We have tried to summarize in the present review the potential problems that may hinder the application of AI in such settings. Hopefully, this review will enable endoscopists and health policymakers to ponder over these issues before trying to extrapolate the advancements of AI in technically advanced settings to those having constraints at multiple levels. How to cite this article: Anirvan P, Meher D, Singh SP. Artificial Intelligence in Gastrointestinal Endoscopy in a Resource-constrained Setting: A Reality Check. Euroasian J Hepato-Gastroenterol 2020;10(2): 92-97.
Keywords: Artificial intelligence; Automated detection; Computer-aided detection; Deep learning; Developing countries; Health resources; Health services accessibility; Lesion detection.
Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.
Conflict of interest statement
Source of support: Nil Conflict of interest: None
Figures
Similar articles
-
Evolving role of artificial intelligence in gastrointestinal endoscopy.World J Gastroenterol. 2020 Dec 14;26(46):7287-7298. doi: 10.3748/wjg.v26.i46.7287. World J Gastroenterol. 2020. PMID: 33362384 Free PMC article. Review.
-
Proceedings from the First Global Artificial Intelligence in Gastroenterology and Endoscopy Summit.Gastrointest Endosc. 2020 Oct;92(4):938-945.e1. doi: 10.1016/j.gie.2020.04.044. Epub 2020 Apr 25. Gastrointest Endosc. 2020. PMID: 32343978
-
Artificial Intelligence in Upper Gastrointestinal Endoscopy.Dig Dis. 2022;40(4):395-408. doi: 10.1159/000518232. Epub 2021 Jul 21. Dig Dis. 2022. PMID: 34348267 Review.
-
Application of artificial intelligence in gastrointestinal endoscopy.J Dig Dis. 2019 Dec;20(12):623-630. doi: 10.1111/1751-2980.12827. Epub 2019 Nov 20. J Dig Dis. 2019. PMID: 31639272 Review.
-
Striving for quality improvement: can artificial intelligence help?Best Pract Res Clin Gastroenterol. 2021 Jun-Aug;52-53:101722. doi: 10.1016/j.bpg.2020.101722. Epub 2020 Dec 29. Best Pract Res Clin Gastroenterol. 2021. PMID: 34172249 Review.
Cited by
-
Psychometric evaluation of Persian version of medical artificial intelligence readiness scale for medical students.BMC Med Educ. 2023 Jul 24;23(1):527. doi: 10.1186/s12909-023-04516-6. BMC Med Educ. 2023. PMID: 37488522 Free PMC article.
-
The Impact of Artificial Intelligence on Health Equity in Oncology: Scoping Review.J Med Internet Res. 2022 Nov 1;24(11):e39748. doi: 10.2196/39748. J Med Internet Res. 2022. PMID: 36005841 Free PMC article.
-
The Feasibility of Applying Artificial Intelligence to Gastrointestinal Endoscopy to Improve the Detection Rate of Early Gastric Cancer Screening.Front Med (Lausanne). 2022 May 16;9:886853. doi: 10.3389/fmed.2022.886853. eCollection 2022. Front Med (Lausanne). 2022. PMID: 35652070 Free PMC article. Review.
-
Use of Artificial Intelligence to Improve the Quality Control of Gastrointestinal Endoscopy.Front Med (Lausanne). 2021 Jul 22;8:709347. doi: 10.3389/fmed.2021.709347. eCollection 2021. Front Med (Lausanne). 2021. PMID: 34368199 Free PMC article. Review.
References
-
- Poole DL,, Mackworth AK,, Goebel R. Computational intelligence: a logical approach. New York: Oxford University Press; 1998. p. 558. p.
-
- Rajaraman V. JohnMcCarthy – father of artificial intelligence. Resonance. 2014 Mar;19(3):198–207.
-
- Lindsay RK,, Buchanan BG,, Feigenbaum EA,, et al. DENDRAL: A case study of the first expert system for scientific hypothesis formation. Artif Intell. 1993 Jun;61(2):209–261. doi: 10.1016/0004-3702(93)90068-M. DOI: - DOI
-
- Shortliffe EH. Chapter 1 – Introduction. In: Shortliffe EH,, editor. computer-based medical consultations: mycin [internet]. Elsevier; 1976. [2020 Jun 8]. pp. 1–61. [cited. ]. p. Available from:
Publication types
LinkOut - more resources
Full Text Sources