NODAL/TGFβ signalling mediates the self-sustained stemness induced by PIK3CAH1047R homozygosity in pluripotent stem cells

Dis Model Mech. 2021 Mar 1;14(3):dmm048298. doi: 10.1242/dmm.048298. Epub 2021 Mar 11.


Activating PIK3CA mutations are known 'drivers' of human cancer and developmental overgrowth syndromes. We recently demonstrated that the 'hotspot' PIK3CAH1047R variant exerts unexpected allele dose-dependent effects on stemness in human pluripotent stem cells (hPSCs). In this study, we combine high-depth transcriptomics, total proteomics and reverse-phase protein arrays to reveal potentially disease-related alterations in heterozygous cells, and to assess the contribution of activated TGFβ signalling to the stemness phenotype of homozygous PIK3CAH1047R cells. We demonstrate signalling rewiring as a function of oncogenic PI3K signalling strength, and provide experimental evidence that self-sustained stemness is causally related to enhanced autocrine NODAL/TGFβ signalling. A significant transcriptomic signature of TGFβ pathway activation in heterozygous PIK3CAH1047R was observed but was modest and was not associated with the stemness phenotype seen in homozygous mutants. Notably, the stemness gene expression in homozygous PIK3CAH1047R hPSCs was reversed by pharmacological inhibition of NODAL/TGFβ signalling, but not by pharmacological PI3Kα pathway inhibition. Altogether, this provides the first in-depth analysis of PI3K signalling in hPSCs and directly links strong PI3K activation to developmental NODAL/TGFβ signalling. This work illustrates the importance of allele dosage and expression when artificial systems are used to model human genetic disease caused by activating PIK3CA mutations. This article has an associated First Person interview with the first author of the paper.

Keywords: PIK3CA; PI3K; Pluripotent stem cells; Stemness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Class I Phosphatidylinositol 3-Kinases / genetics
  • Class I Phosphatidylinositol 3-Kinases / metabolism
  • Humans
  • Mutation / genetics
  • Phosphatidylinositol 3-Kinases* / metabolism
  • Pluripotent Stem Cells* / metabolism
  • Signal Transduction
  • Transforming Growth Factor beta


  • Transforming Growth Factor beta
  • Class I Phosphatidylinositol 3-Kinases