Autonomous robotic anastomosis has the potential to improve surgical outcomes by performing more consistent suture spacing and bite size compared to manual anastomosis. However, due to soft tissue's irregular shape and unpredictable deformation, performing autonomous robotic anastomosis without continuous tissue detection and three-dimensional path planning strategies remains a challenging task. In this paper, we present a novel three-dimensional path planning algorithm for Smart Tissue Autonomous Robot (STAR) to enable semi-autonomous robotic anastomosis on deformable tissue. The algorithm incorporates (i) continuous detection of 3D near infrared (NIR) markers manually placed on deformable tissue before the procedure, (ii) generating a uniform and consistent suture placement plan using 3D path planning methods based on the locations of the NIR markers, and (iii) updating the remaining suture plan after each completed stitch using a non-rigid registration technique to account for tissue deformation during anastomosis. We evaluate the path planning algorithm for accuracy and consistency by comparing the anastomosis of synthetic vaginal cuff tissue completed by STAR and a surgeon. Our test results indicate that STAR using the proposed method achieves 2.6 times better consistency in suture spacing and 2.4 times better consistency in suture bite sizes than the manual anastomosis.
Keywords: 3D path planning; Image-guided surgery; Medical robotics.