Reversal of reperfusion injury after ischemic arrest with pressure-controlled intermittent coronary sinus occlusion

J Thorac Cardiovasc Surg. 1988 Apr;95(4):637-42.

Abstract

Recent experimental studies have shown that pressure-controlled intermittent coronary sinus occlusion effectively reduces both infarct size and myocardium at risk after coronary artery occlusion. This study was undertaken to determine whether this modality was equally effective in altering reperfusion damage after a period of ischemic arrest. Fourteen pigs were placed on cardiopulmonary bypass and subjected to 2 hours of ischemic arrest with multidose potassium crystalloid cardioplegia supplemented with topical and systemic hypothermia (28 degrees C). During arrest, the mid-left anterior descending artery was occluded with a snare, which was released immediately after aortic unclamping. In seven pigs, a 7F balloon-tipped catheter was positioned in the coronary sinus and pressure-controlled intermittent coronary sinus occlusion was performed for 60 minutes after aortic unclamping. Seven other pigs served as controls. Parameters measured included stroke work index, ejection fraction, and myocardial pH in the distribution of the distal left anterior descending artery. Pigs treated with pressure-controlled intermittent coronary sinus occlusion had a significantly higher myocardial pH (6.99 +/- 0.06 versus 6.67 +/- 0.05, p less than 0.01), ejection fraction (50% +/- 2% versus 33% +/- 6%, p less than 0.01), and stroke work index (0.87 +/- 0.07 versus 0.61 +/- 0.05 gm-m/kg, p less than 0.01) after 60 minutes of reperfusion compared with those of the group not treated in this way. We conclude that pressure-controlled intermittent coronary sinus occlusion effectively reverses reperfusion damage after periods of ischemic arrest.

MeSH terms

  • Animals
  • Cardioplegic Solutions / pharmacology
  • Cardiopulmonary Bypass*
  • Coronary Circulation
  • Coronary Vessels / physiology*
  • Heart / physiology*
  • Heart Arrest, Induced*
  • Myocardium / metabolism
  • Perfusion
  • Pressure
  • Stroke Volume
  • Swine
  • Time Factors

Substances

  • Cardioplegic Solutions