Objectives: Revealing the role and mechanism of circ_0081572 in periodontitis progression.
Design: Quantitative real-time PCR (qRT-PCR) was applied to measure the expression of circ_0081572, microRNA (miR)-378h and retinoid acid-related orphan receptor A (RORA). Lipopolysaccharide (LPS) was used to treat periodontal ligament cells (PDLCs) to construct periodontitis cell model in vitro. Cell counting kit 8 (CCK8) assay and flow cytometry were used to measure cell viability and apoptosis. The caspase 3 activity was detected by Caspase 3 Activity Assay Kit. Western blot assay was performed to detect the expression of apoptosis-associated proteins and RORA. The inflammation response and oxidative stress were determined by detecting the levels of inflammatory cytokines and reactive oxygen species (ROS). The relationship between miR-378h and circ_0081572 or RORA was verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and biotin-labeled RNA pull-down assay.
Results: Circ_0081572 was a stability circRNA with downregulated expression in the gingival tissues of periodontitis patients. Overexpression of circ_0081572 could alleviate LPS-induced PDLCs injury. Circ_0081572 could serve as a sponge for miR-378h. Furthermore, miR-378h could reverse the inhibition of circ_0081572 on LPS-induced PDLCs injury. In addition, RORA could be targeted by miR-378h, and its silencing could reverse the suppressive effect of miR-378h inhibitor and circ_0081572 overexpression on LPS-induced PDLCs injury.
Conclusions: Our results suggested that circ_0081572 might prevent periodontitis by regulating the miR-378h /RORA axis.
Keywords: LPS; Periodontitis; RORA; circ_0081572; miR-378h.
Copyright © 2021 Elsevier Ltd. All rights reserved.