Ligand-Supported Hot Electron Harvesting: Revisiting the pH-Responsive Surface-Enhanced Raman Scattering Spectrum of p-Aminothiophenol

J Phys Chem Lett. 2021 Feb 11;12(5):1542-1547. doi: 10.1021/acs.jpclett.0c03732. Epub 2021 Feb 3.

Abstract

The discussion of the surface-enhanced Raman scattering (SERS) spectra of p-aminothiophenol (PATP) and of its photocatalytic reaction product 4,4'-dimercaptoazobenzene (DMAB) is important for understanding plasmon-supported spectroscopy and catalysis. Here, SERS spectra indicate that DMAB forms also in a nonphotocatalytic reaction on silver nanoparticles. Spectra measured at low pH, in the presence of the acids HCl, H2SO4, HNO3, and H3PO4, show that DMAB is reduced to PATP when both protons and chloride ions are present. Moreover, the successful reduction of DMAB in the presence of other, halide and nonhalide, ligands suggests a central role of these species in the reduction. As discussed, the ligands increase the efficiency of hot-electron harvesting. The pH-associated reversibility of the SERS spectrum of PATP is established as an observation of the DMAB dimer at high pH and of PATP as a product of its hot-electron reduction at low pH, in the presence of the appropriate ligand.