Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats

Ecotoxicol Environ Saf. 2021 Apr 1:212:112012. doi: 10.1016/j.ecoenv.2021.112012. Epub 2021 Feb 4.

Abstract

Microplastics (MPs) considered as a new persistent environmental pollutant could enter into the circulatory system and result in decrease of sperm quantity and quality in mice. However, the effects of Polystyrene MPs (PS MPs) on the ovary and its mechanism in rats remained unclear. In this present study, thirty-two healthy female Wistar rats were exposed to different concentrations of 0.5 µm PS MPs dispersed in deionized water for 90 days. Using hematoxylin-eosin (HE) staining, the number of growing follicles was decreased compared to the control group. In addition, the activity of glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) were decreased while the expression level of malondialdehyde (MDA) was increased in ovary tissue. Confirmed by immunohistochemistry, the integrated optical density of NLRP3 and Cleaved-Caspase-1 had been elevated by 13.9 and 14 in granulosa cells in the 1.5 mg/kg/d group. Furthermore, compared to the control group, the level of AMH had been decreased by 23.3 pg/ml while IL-1β and IL-18 had been increased by 32 and 18.5 pg/ml in the 1.5 mg/kg/d group using the enzyme-linked immune sorbent assay (ELISA). Besides, the apoptosis of granulosa cells was elevated measured by terminal deoxyribonucleotide transferase-mediated nick end labeling (TUNEL) staining and flow cytometry. Moreover, western blot assays showed that the expressions of NLRP3/Caspase-1 signaling pathway related factors and Cleaved-Caspase-3 were increased. These results demonstrated that PS MPs could induce pyroptosis and apoptosis of ovarian granulosa cells via the NLRP3/Caspase-1 signaling pathway maybe triggered by oxidative stress. The present study suggested that exposure to microplastics had adverse effects on ovary and could be a potential risk factor for female infertility, which provided new insights into the toxicity of MPs on female reproduction.

Keywords: Apoptosis; Granulosa cell; Microplastics; NLRP3/Caspase-1 signaling pathway; Pyroptosis; Rats.

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Caspase 1 / metabolism*
  • Female
  • Granulosa Cells / drug effects
  • Granulosa Cells / metabolism
  • Granulosa Cells / pathology
  • Interleukin-18 / metabolism
  • Interleukin-1beta / metabolism
  • Malondialdehyde / metabolism
  • Microplastics / toxicity*
  • NLR Family, Pyrin Domain-Containing 3 Protein / metabolism*
  • Ovary / drug effects*
  • Ovary / metabolism
  • Ovary / pathology
  • Oxidative Stress / drug effects
  • Polystyrenes / toxicity*
  • Pyroptosis / drug effects*
  • Rats
  • Rats, Wistar
  • Signal Transduction

Substances

  • Interleukin-18
  • Interleukin-1beta
  • Microplastics
  • NLR Family, Pyrin Domain-Containing 3 Protein
  • Polystyrenes
  • Malondialdehyde
  • Caspase 1