Chronic Treatment of Ascorbic Acid Leads to Age-Dependent Neuroprotection against Oxidative Injury in Hippocampal Slice Cultures

Int J Mol Sci. 2021 Feb 5;22(4):1608. doi: 10.3390/ijms22041608.

Abstract

Increased oxidative damage in the brain, which increases with age, is the cause of abnormal brain function and various diseases. Ascorbic acid (AA) is known as an endogenous antioxidant that provides neuronal protection against oxidative damage. However, with aging, its extracellular concentrations and uptake decrease in the brain. Few studies have dealt with age-related functional changes in the brain to sustained ascorbate supplementation. This study aimed to investigate the susceptibility of hippocampal neurons to oxidative injury following acute and chronic AA administration. Oxidative stress was induced by kainic acid (KA, 5 µM) for 18 h in hippocampal slice cultures. After KA exposure, less neuronal cell death was observed in the 3 w cultured slice compared to the 9 w cultured slice. In the chronic AA treatment (6 w), the 9 w-daily group showed reduced neuronal cell death and increased superoxide dismutase (SOD) and Nrf2 expressions compared to the 9 w. In addition, the 9 w group showed delayed latencies and reduced signal activity compared to the 3 w, while the 9 w-daily group showed shorter latencies and increased signal activity than the 9 w. These results suggest that the maintenance of the antioxidant system by chronic AA treatment during aging could preserve redox capacity to protect hippocampal neurons from age-related oxidative stress.

Keywords: aging; antioxidant; ascorbic acid; neuroprotection; organotypic hippocampal slice culture.

MeSH terms

  • Aging / drug effects
  • Aging / metabolism
  • Animals
  • Antioxidants / administration & dosage
  • Ascorbic Acid / administration & dosage*
  • Excitatory Amino Acid Agonists / toxicity
  • Hippocampus / drug effects*
  • Hippocampus / injuries
  • Hippocampus / metabolism
  • Kainic Acid / toxicity
  • Neurons / drug effects
  • Neurons / metabolism
  • Neuroprotection / drug effects
  • Neuroprotective Agents / administration & dosage*
  • Organ Culture Techniques
  • Oxidative Stress / drug effects
  • Rats
  • Rats, Sprague-Dawley
  • Reactive Oxygen Species / metabolism

Substances

  • Antioxidants
  • Excitatory Amino Acid Agonists
  • Neuroprotective Agents
  • Reactive Oxygen Species
  • Ascorbic Acid
  • Kainic Acid