Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization

Nat Rev Mol Cell Biol. 2021 Apr;22(4):283-298. doi: 10.1038/s41580-021-00328-y. Epub 2021 Feb 9.

Abstract

The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Chromatin / metabolism*
  • Chromosomes / metabolism
  • DNA / metabolism
  • Humans
  • Telomerase / metabolism
  • Telomere / metabolism*
  • Telomere-Binding Proteins / metabolism*

Substances

  • Chromatin
  • Telomere-Binding Proteins
  • DNA
  • Telomerase