Internalization of nerve growth factor by PC12 cells. A description of cellular pools

J Biol Chem. 1988 Apr 15;263(11):5083-90.

Abstract

Binding and internalization of nerve growth factor (NGF) by responsive cells is a complex process. We have incubated rat pheochromocytoma cells (PC12) with 125I-NGF at 37 degrees C and measured the association of ligand after removal of subsets of bound ligand by different methods. Chase with unlabeled NGF at either 4 or 37 degrees C, acid stripping, nonionic detergent stability, and combinations of these protocols were utilized. These variations of the binding assay were able to distinguish ligand bound to fast versus slow cell surface receptors, NGF bound to slow receptors at the cell surface versus cell interior, and soluble ligand versus cytoskeletally attached NGF. Quantitative and temporal relations among five cellular pools were defined. Experiments with the inhibitors chloroquine, cytochalasin B, and colchicine defined pools of NGF in terms of the route through the cell from the plasma membrane to the lysosome. Chloroquine caused accumulation of NGF only in the pool that was not associated with the cytoskeleton, implicating the involvement of this pool in supplying ligand to the lysosome. Results with cytochalasin B and colchicine suggest that both microfilaments and microtubules are involved in pathways leading to NGF degradation. A semiquantitative model for the movement of NGF through the cell is presented based on these observations.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adrenal Gland Neoplasms / metabolism*
  • Animals
  • Cell Line
  • Dose-Response Relationship, Drug
  • Male
  • Mice
  • Nerve Growth Factors / metabolism*
  • Pheochromocytoma / metabolism*
  • Rats
  • Temperature
  • Time Factors
  • Tumor Cells, Cultured / metabolism

Substances

  • Nerve Growth Factors