Expansion and characterization of epithelial stem cells with potential for cyclical hair regeneration

Sci Rep. 2021 Feb 10;11(1):1173. doi: 10.1038/s41598-020-80624-3.

Abstract

In mammals, organ induction occurs only during embryonic development except for hair follicles (HFs). However, HF-resident epithelial stem cells (HFSCs), which are responsible for repetitive HF regeneration, are not fully characterized. Here, we establish in vitro culture systems that are capable of controlling the ability of HFSCs to regenerate HFs. Based on a method that precisely controlled the number of HFs for regeneration, functional analysis revealed that CD34/CD49f/integrin β5 (Itgβ5)-triple-positive (CD34+/CD49f+/Itgβ5+) cells have multipotency and functional significance for continual hair regeneration. In native HFs, these cells reside in the uppermost area of the bulge region, which is surrounded by tenascin in mice and humans. This study unveils the subpopulation of HFSCs responsible for long-term hair cycling of HFs regenerated from bioengineered HF germ, suggesting the presence of functional heterogeneity among bulge HFSCs and the utility of our culture system to achieve HF regenerative therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Epithelial Cells / metabolism*
  • Hair Follicle / physiology*
  • Humans
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Mice, Transgenic
  • Multipotent Stem Cells / metabolism*
  • Regeneration*