Molecular insight into regioselectivity of transfructosylation catalyzed by GH68 levansucrase and β-fructofuranosidase

J Biol Chem. 2021 Jan-Jun:296:100398. doi: 10.1016/j.jbc.2021.100398. Epub 2021 Feb 8.

Abstract

Glycoside hydrolase family 68 (GH68) enzymes catalyze β-fructosyltransfer from sucrose to another sucrose, the so-called transfructosylation. Although regioselectivity of transfructosylation is divergent in GH68 enzymes, there is insufficient information available on the structural factor(s) involved in the selectivity. Here, we found two GH68 enzymes, β-fructofuranosidase (FFZm) and levansucrase (LSZm), encoded tandemly in the genome of Zymomonas mobilis, displayed different selectivity: FFZm catalyzed the β-(2→1)-transfructosylation (1-TF), whereas LSZm did both of 1-TF and β-(2→6)-transfructosylation (6-TF). We identified His79FFZm and Ala343FFZm and their corresponding Asn84LSZm and Ser345LSZm respectively as the structural factors for those regioselectivities. LSZm with the respective substitution of FFZm-type His and Ala for its Asn84LSZm and Ser345LSZm (N84H/S345A-LSZm) lost 6-TF and enhanced 1-TF. Conversely, the LSZm-type replacement of His79FFZm and Ala343FFZm in FFZm (H79N/A343S-FFZm) almost lost 1-TF and acquired 6-TF. H79N/A343S-FFZm exhibited the selectivity like LSZm but did not produce the β-(2→6)-fructoside-linked levan and/or long levanooligosaccharides that LSZm did. We assumed Phe189LSZm to be a responsible residue for the elongation of levan chain in LSZm and mutated the corresponding Leu187FFZm in FFZm to Phe. An H79N/L187F/A343S-FFZm produced a higher quantity of long levanooligosaccharides than H79N/A343S-FFZm (or H79N-FFZm), although without levan formation, suggesting that LSZm has another structural factor for levan production. We also found that FFZm generated a sucrose analog, β-D-fructofuranosyl α-D-mannopyranoside, by β-fructosyltransfer to d-mannose and regarded His79FFZm and Ala343FFZm as key residues for this acceptor specificity. In summary, this study provides insight into the structural factors of regioselectivity and acceptor specificity in transfructosylation of GH68 enzymes.

Keywords: glycoside hydrolase family 68; levansucrase; regioselectivity; transfructosylation; β-d-fructofuranosyl α-d-mannopyranoside; β-fructofuranosidase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Binding Sites
  • Catalysis
  • Catalytic Domain
  • Hexosyltransferases / chemistry
  • Hexosyltransferases / genetics
  • Hexosyltransferases / metabolism*
  • Mutagenesis, Site-Directed
  • Stereoisomerism
  • Structure-Activity Relationship
  • Sucrose / chemistry*
  • Sucrose / metabolism*
  • Zymomonas / enzymology*
  • Zymomonas / isolation & purification
  • Zymomonas / metabolism
  • beta-Fructofuranosidase / chemistry
  • beta-Fructofuranosidase / genetics
  • beta-Fructofuranosidase / metabolism*

Substances

  • Bacterial Proteins
  • Sucrose
  • Hexosyltransferases
  • levansucrase
  • beta-Fructofuranosidase