A pebble accretion model for the formation of the terrestrial planets in the Solar System
- PMID: 33597233
- PMCID: PMC7888959
- DOI: 10.1126/sciadv.abc0444
A pebble accretion model for the formation of the terrestrial planets in the Solar System
Abstract
Pebbles of millimeter sizes are abundant in protoplanetary discs around young stars. Chondrules inside primitive meteorites-formed by melting of dust aggregate pebbles or in impacts between planetesimals-have similar sizes. The role of pebble accretion for terrestrial planet formation is nevertheless unclear. Here, we present a model where inward-drifting pebbles feed the growth of terrestrial planets. The masses and orbits of Venus, Earth, Theia (which later collided with Earth to form the Moon), and Mars are all consistent with pebble accretion onto protoplanets that formed around Mars' orbit and migrated to their final positions while growing. The isotopic compositions of Earth and Mars are matched qualitatively by accretion of two generations of pebbles, carrying distinct isotopic signatures. Last, we show that the water and carbon budget of Earth can be delivered by pebbles from the early generation before the gas envelope became hot enough to vaporize volatiles.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures
Similar articles
-
Terrestrial planet formation from lost inner solar system material.Sci Adv. 2021 Dec 24;7(52):eabj7601. doi: 10.1126/sciadv.abj7601. Epub 2021 Dec 22. Sci Adv. 2021. PMID: 34936445 Free PMC article.
-
Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon.Nature. 2018 Mar 21;555(7697):507-510. doi: 10.1038/nature25990. Nature. 2018. PMID: 29565359 Free PMC article.
-
Growing the terrestrial planets from the gradual accumulation of submeter-sized objects.Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14180-5. doi: 10.1073/pnas.1513364112. Epub 2015 Oct 28. Proc Natl Acad Sci U S A. 2015. PMID: 26512109 Free PMC article.
-
M stars as targets for terrestrial exoplanet searches and biosignature detection.Astrobiology. 2007 Feb;7(1):85-166. doi: 10.1089/ast.2006.0125. Astrobiology. 2007. PMID: 17407405 Review.
-
Observed properties of extrasolar planets.Science. 2013 May 3;340(6132):572-6. doi: 10.1126/science.1233545. Science. 2013. PMID: 23641110 Review.
Cited by
-
Setting the geological scene for the origin of life and continuing open questions about its emergence.Front Astron Space Sci. 2023 Jan 5;9:1095701. doi: 10.3389/fspas.2022.1095701. Front Astron Space Sci. 2023. PMID: 38274407 Free PMC article.
-
I/Pu reveals Earth mainly accreted from volatile-poor differentiated planetesimals.Sci Adv. 2023 Jul 7;9(27):eadg9213. doi: 10.1126/sciadv.adg9213. Epub 2023 Jul 5. Sci Adv. 2023. PMID: 37406123 Free PMC article.
-
Silicon isotope constraints on terrestrial planet accretion.Nature. 2023 Jul;619(7970):539-544. doi: 10.1038/s41586-023-06135-z. Epub 2023 Jun 14. Nature. 2023. PMID: 37316662 Free PMC article.
-
Earth shaped by primordial H2 atmospheres.Nature. 2023 Apr;616(7956):306-311. doi: 10.1038/s41586-023-05823-0. Epub 2023 Apr 12. Nature. 2023. PMID: 37045923
-
Terrestrial planet and asteroid belt formation by Jupiter-Saturn chaotic excitation.Sci Rep. 2023 Mar 27;13(1):4708. doi: 10.1038/s41598-023-30382-9. Sci Rep. 2023. PMID: 36973305 Free PMC article.
References
-
- Levison H. F., Thommes E., Duncan M. J., Modeling the formation of giant planet cores. I. Evaluating key processes. Astron. J. 139, 1297–1314 (2010).
-
- Johansen A., Bitsch B., Exploring the conditions for forming cold gas giants through planetesimal accretion. Astron. Astrophys. 631, A70 (2019).
-
- Ormel C. W., Klahr H. H., The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010).
-
- Lambrechts M., Johansen A., Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012).
-
- Johansen A., Ida S., Brasser R., How planetary growth outperforms migration. Astron. Astrophy. 622, A202 (2019).
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
