Mapping the entire functionally active endometrial microbiota
- PMID: 33598714
- DOI: 10.1093/humrep/deaa372
Mapping the entire functionally active endometrial microbiota
Abstract
Study question: Does endometrium harbour functionally active microorganisms and whether the microbial composition differs between proliferative and mid-secretory phases?
Summary answer: Endometrium harbours functionally alive microorganisms including bacteria, viruses, archaea and fungi whose composition and metabolic functions change along the menstrual cycle.
What is known already: Resident microbes in the endometrium have been detected, where microbial dysfunction has been associated with reproductive health and disease. Nevertheless, the core microorganismal composition in healthy endometrium is not determined and whether the identified bacterial DNA sequences refer to alive/functionally active microbes is not clear. Furthermore, whether there are cyclical changes in the microbial composition remains an open issue.
Study design, size, duration: RNA sequencing (RNAseq) data from 14 endometrial paired samples from healthy women, 7 samples from the mid-secretory phase and 7 samples from the consecutive proliferative phase were analysed for the microbial RNA sequences.
Participants/materials, setting, methods: The raw RNAseq data were converted into FASTQ format using SRA Toolkit. The unmapped reads to human sequences were aligned to the reference database Kraken2 and visualised with Krona software. Menstrual phase taxonomic differences were performed by R package metagenomeSeq. The functional analysis of endometrial microbiota was obtained with HUMANn2 and the comparison between menstrual phases was conducted by one-way ANOVA. Human RNAseq analysis was performed using miARma-Seq and the functional enrichment analysis was carried out using gene set enrichment analysis (GSEA; HumanCyc). The integration of metabolic pathways between host and microbes was investigated. The developed method of active microbiota mapping was validated in independent sample set.
Main results and the role of chance: With the novel metatranscriptomic approach, we mapped the entire alive microbiota composing of >5300 microorganisms within the endometrium of healthy women. Microbes such as bacteria, fungi, viruses and archaea were identified. The validation of three independent endometrial samples from different ethnicity confirmed the findings. Significant differences in the microbial abundances in the mid-secretory vs. proliferative phases were detected with possible metabolic activity in the host-microbiota crosstalk in receptive phase endometrium, specifically in the prostanoid biosynthesis pathway and L-tryptophan metabolism.
Large scale data: The raw RNAseq data used in the current study are available at GEO GSE86491 and at BioProject PRJNA379542.
Limitations, reasons for caution: These pioneering results should be confirmed in a bigger sample size.
Wider implications of the findings: Our study confirms the presence of active microbes, bacteria, fungi, viruses and archaea in the healthy human endometrium with implications in receptive phase endometrial functions, meaning that microbial dysfunction could impair the metabolic pathways important for endometrial receptivity. The results of this study contribute to the better understanding of endometrial microbiota composition in healthy women and its possible role in endometrial functions. In addition, our novel methodological pipeline for analysing alive microbes with transcriptional and metabolic activities could serve to inspire new analysis approaches in reproductive medicine.
Study funding/competing interests: This work is supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER): grants RYC-2016-21199 and ENDORE SAF2017-87526-R; FEDER/Junta de Andalucía-Consejería de Economía y Conocimiento: MENDO (B-CTS-500-UGR18) and by the University of Granada Plan Propio de Investigación 2016 - Excellence actions: Unit of Excellence on Exercise and Health (UCEES) (SOMM17/6107/UGR). A.S.-L. and N.M.M. are funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-0854409 and FPU19/01638). S.A. has received honoraria for lectures from Merck. The funder had no role in this study.
Keywords: endometrium; menstrual cycle; metabolism; microbiome; microbiota.
© The Author(s) 2021. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Similar articles
-
The mid-secretory endometrial transcriptomic landscape in endometriosis: a meta-analysis.Hum Reprod Open. 2022 Apr 4;2022(2):hoac016. doi: 10.1093/hropen/hoac016. eCollection 2022. Hum Reprod Open. 2022. PMID: 35464885 Free PMC article.
-
Human endometrial cell-type-specific RNA sequencing provides new insights into the embryo-endometrium interplay.Hum Reprod Open. 2022 Oct 13;2022(4):hoac043. doi: 10.1093/hropen/hoac043. eCollection 2022. Hum Reprod Open. 2022. PMID: 36339249 Free PMC article.
-
Endometrial receptivity revisited: endometrial transcriptome adjusted for tissue cellular heterogeneity.Hum Reprod. 2018 Nov 1;33(11):2074-2086. doi: 10.1093/humrep/dey301. Hum Reprod. 2018. PMID: 30295736
-
New Opportunities for Endometrial Health by Modifying Uterine Microbial Composition: Present or Future?Biomolecules. 2020 Apr 11;10(4):593. doi: 10.3390/biom10040593. Biomolecules. 2020. PMID: 32290428 Free PMC article. Review.
-
The Role of Microbiota in the Immunopathogenesis of Endometrial Cancer.Int J Mol Sci. 2022 May 20;23(10):5756. doi: 10.3390/ijms23105756. Int J Mol Sci. 2022. PMID: 35628566 Free PMC article. Review.
Cited by
-
Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools.Semin Reprod Med. 2023 Sep;41(5):172-189. doi: 10.1055/s-0043-1778017. Epub 2024 Jan 23. Semin Reprod Med. 2023. PMID: 38262441 Free PMC article. Review.
-
Temporal and spatial differences in the vaginal microbiome of Chinese healthy women.PeerJ. 2023 Dec 1;11:e16438. doi: 10.7717/peerj.16438. eCollection 2023. PeerJ. 2023. PMID: 38054020 Free PMC article.
-
Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: a study on soybean growth and development.Front Microbiol. 2023 Sep 20;14:1233351. doi: 10.3389/fmicb.2023.1233351. eCollection 2023. Front Microbiol. 2023. PMID: 37799597 Free PMC article.
-
Infertility in patients with uterine fibroids: a debate about the hypothetical mechanisms.Hum Reprod. 2023 Nov 2;38(11):2045-2054. doi: 10.1093/humrep/dead194. Hum Reprod. 2023. PMID: 37771247 Free PMC article.
-
The Endometrial Microbiota: Challenges and Prospects.Medicina (Kaunas). 2023 Aug 25;59(9):1540. doi: 10.3390/medicina59091540. Medicina (Kaunas). 2023. PMID: 37763663 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
