Predictive Capacity of Pulmonary Function Tests for Acute Mountain Sickness

High Alt Med Biol. 2021 Jun;22(2):193-200. doi: 10.1089/ham.2020.0150. Epub 2021 Feb 18.


Small, Elan, Nicholas Juul, David Pomeranz, Patrick Burns, Caleb Phillips, Mary Cheffers, and Grant S. Lipman. Predictive capacity of pulmonary function tests for acute mountain sickness. High Alt Med Biol. 22: 193-200, 2021. Background: Pulmonary function as measured by spirometry has been investigated at altitude with heterogenous results, though data focused on spirometry and acute mountain sickness (AMS) are limited. The objective of this study was to investigate the capacity of pulmonary function tests (PFTs) to predict the development of AMS. Materials and Methods: This study was a blinded prospective observational study run during a randomized controlled trial comparing acetazolamide, budesonide, and placebo for AMS prevention on White Mountain, CA. Spirometry measurements of forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and peak expiratory flow were taken at a baseline altitude of 1,250 m, and the evening of and morning after ascent to 3,810 m. Measurements were assessed for correlation with AMS. Results: One hundred three participants were analyzed with well-matched baseline demographics and AMS incidence of 75 (73%) and severe AMS of 48 (47%). There were no statistically significant associations between changes in mean spirometry values on ascent to high altitude with incidence of AMS or severe AMS. Lake Louise Questionnaire scores were negatively correlated with FVC (r = -0.31) and FEV1 (r = -0.29) the night of ascent. Baseline PFT had a predictive accuracy of 65%-73% for AMS, with a receiver operating characteristic of 0.51-0.65. Conclusions: Spirometry did not demonstrate statistically significant changes on ascent to high altitude, nor were there significant associations with incidence of AMS or severe AMS. Low-altitude spirometry did not accurately predict development of AMS, and it should not be recommended for risk stratification.

Keywords: acclimatization; acute mountain sickness; flow volume curve; prediction; spirometry.

Publication types

  • Observational Study
  • Randomized Controlled Trial

MeSH terms

  • Acetazolamide
  • Acute Disease
  • Altitude
  • Altitude Sickness* / diagnosis
  • Humans
  • Respiratory Function Tests
  • Vital Capacity


  • Acetazolamide