Approaches in metabolomics for regulatory toxicology applications

Analyst. 2021 Mar 21;146(6):1820-1834. doi: 10.1039/d0an02212h. Epub 2021 Feb 19.

Abstract

Innovative methodological approaches are needed to conduct human health and environmental risk assessments on a growing number of marketed chemicals. Metabolomics is progressively proving its value as an efficient strategy to perform toxicological evaluations of new and existing substances, and it will likely become a key tool to accelerate chemical risk assessments. However, additional guidance with widely accepted and harmonized procedures is needed before metabolomics can be routinely incorporated in decision-making for regulatory purposes. The aim of this review is to provide an overview of metabolomic strategies that have been successfully employed in toxicity assessment as well as the most promising workflows in a regulatory context. First, we provide a general view of the different steps of regulatory toxicology-oriented metabolomics. Emphasis is put on three key elements: robustness of experimental design, choice of analytical platform, and use of adapted data treatment tools. Then, examples in which metabolomics supported regulatory toxicology outputs in different scenarios are reviewed, including chemical grouping, elucidation of mechanisms of toxicity, and determination of points of departure. The overall intention is to provide insights into why and how to plan and conduct metabolomic studies for regulatory toxicology purposes.