Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 19;7(8):eabc4530.
doi: 10.1126/sciadv.abc4530. Print 2021 Feb.

Learning hierarchical sequence representations across human cortex and hippocampus

Affiliations

Learning hierarchical sequence representations across human cortex and hippocampus

Simon Henin et al. Sci Adv. .

Abstract

Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain's ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Neural tracking of auditory SL.
(A) Schematic depiction of the auditory SL task. The structured stream (left) contained 12 syllables [250-ms stimuli onset asynchrony (SOA), 4 Hz] in which the TPs formed four words (color-coded for visualization, 750-ms SOA, 1.33 Hz). The random stream (right) contained the same 12 syllables in a random order. The predicted neural response is shown below each syllable stream: Syllable tracking (top) was expected in both conditions, whereas word tracking (bottom) was expected only in the structured condition. (B) Phase coherence spectrum in neural data for the structured (left, black) and random (right, gray) conditions from 1898 electrodes in 17 patients. Each significant electrode is depicted with a thin line, and the average is depicted with a thick line. (C) Phase coherence spectrum in the structured condition for electrodes showing word-tracking responses, in two groups: electrodes that showed tracking responses at the word rate only (top, blue) and electrodes that showed tracking responses at both the word and syllable rate (bottom, orange). (D) Localization of word-only (top, blue) and word + syll (bottom, orange) electrodes exhibiting significant phase coherence in the field potential (FP; light blue, light orange) or the high-gamma band (HGB; dark blue, dark orange).
Fig. 2
Fig. 2. Pattern similarity results during auditory SL.
Multidimensional scaling (MDS) of the distances between syllabic responses across electrodes showing significant (A) word + syll responses and (B) word-only responses, as well as (C) across electrodes from the hippocampus. Individual words are color-coded; subscripts represent ordinal position (e.g., “tu1pi2ro3”). Dot-dashed ellipses indicate grouping by TP, solid ellipses outline grouping by ordinal position, and dashed ellipses indicate grouping at the level of the individual words (color-coded). (D) Quantification of multivariate similarity for syllables in the auditory SL task. Left: Similarity by TP. Greater within-class similarity indicates stronger grouping of syllables with low TP (0.33) than syllables with high TP (1.0). A Friedman test indicated a main effect of electrode type on TP similarity (χ2 = 22.03, P < 0.001). Middle: Within versus between similarity for ordinal position. Greater within-class similarity indicates stronger grouping of syllables holding the same first, second, or third position in a word. A Friedman test indicated a significant main effect of electrode type (χ2 = 790.35, P < 0.001). Right: Within versus between similarity for word identity. Greater within-class similarity indicates grouping of syllables into individual words. A Friedman test indicated a significant main effect of electrode type (χ2 = 265.29, P < 0.001). ***P < 0.001 and **P < 0.01, Bonferroni-corrected Wilcoxon rank sum test; error bars denote the population SEM.
Fig. 3
Fig. 3. Neural tracking of visual SL.
(A) Schematic depiction of the visual SL task. The structured stream (left) consisted of a continuous visual stream of eight fractals (375-ms SOA, 2.66 Hz). The TPs were adjusted to form four fractal pairs (750-ms SOA, 1.33 Hz). Note that the SOA of the fractals was elongated compared to the syllables to match the frequency of the learned units (pairs and words), given that there were two fractals per unit and three syllables. The random stream (right) contained the same fractals but in random order. The predicted neural responses are shown under each stream: Fractal tracking is expected for both streams, while pair tracking is expected for the structured stream only. (B) Phase coherence spectrum in neural data for the structured (left, black) and random (right, gray) conditions from 1606 electrodes in 12 patients. Each significant electrode is depicted with a thin line, and the average across the population is depicted with a thick line. (C) Phase coherence spectrum in the structured condition for electrodes showing pair-tracking responses, in two sets: electrodes that tracked pairs only (left, blue) and electrodes that tracked pairs and fractals (right, orange). (D) Localization of pair-only (top, blue) and pair + fractal (bottom, orange) electrodes exhibiting significant phase coherence in the FP (light blue, light orange) or HGB (dark blue, dark orange).
Fig. 4
Fig. 4. Pattern similarity results during visual SL.
MDS of the distances between responses to individual fractals across (A) pair-only, (B) pair + fractal, and (C) hippocampal electrodes. Pairs are color-coded; odd numbers refer to the first position, and even numbers refer to the second position. Dot-dashed ellipses outline grouping by TP/ordinal position in pair + fractal electrodes. Solid ellipses outline grouping by TP/ordinal position in pair-only electrodes. Dashed ellipses indicate grouping by pair in pair-only and hippocampal electrodes. (D) Comparison of multivariate pattern similarity for fractals in the visual SL task. Left: Within versus between similarity for low versus high TP. Greater within-class similarity indicates stronger grouping of fractals with a low TP (0.33) over fractals with a high TP (1.0). A Friedman test indicated a main effect of electrode type on TP similarity (χ2 = 19.3, P < 0.001). Middle: Within versus between similarity for ordinal position. Greater within-class similarity indicates grouping of fractals holding the same first or second position in a pair. A Friedman test indicated a main effect of electrode type (χ2 = 122.2, P < 0.001). Right: Within versus between similarity for pair identity. Greater within-class similarity indicates grouping of fractals into pairs. A Friedman test indicated a main effect of electrode type (χ2 = 40.04, P < 0.001). ***P < 001 and *P < 0.05, Wilcoxon rank sum test; error bars denote the population SEM.

Similar articles

Cited by

References

    1. Kuhl P. K., Early language acquisition: Cracking the speech code. Nat. Rev. Neurosci. 5, 831–843 (2004). - PubMed
    1. Saffran J. R., Aslin R. N., Newport E. L., Statistical learning by 8-month-old infants. Science 274, 1926–1928 (1996). - PubMed
    1. Kirkham N. Z., Slemmer J. A., Johnson S. P., Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition 83, B35–B42 (2002). - PubMed
    1. N. B. Turk-Browne, in The Influence of Attention, Learning, and Motivation on Visual Search, M. D. Dodd, J. H. Flowers, Eds. (Springer, 2012), pp. 117–146. - PubMed
    1. Aslin R. N., Statistical learning: A powerful mechanism that operates by mere exposure. Wiley Interdiscip. Rev. Cogn. Sci. 8, e1373 (2017). - PMC - PubMed

Publication types